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SUMMARY:  
Based on appropriate geometrical, material constitutive and equilibrium equations, a new fiber beam-column 
element for circular concrete filled steel tubes under torsion was proposed, and a nonlinear analysis program was 
also developed for obtaining the entire loading history of concrete filled steel tube under combined 
compression-bending-torsion load could be predicted with good agreement with test results. High solution 
precision and efficiency could be obtained when analyzing the mechanical behavior of circular concrete filled 
steel tubes under combined compression-bending-torsion load. 
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1. INTRODUCTION 
  

Concrete filled steel tube columns are frequently used for the piers of bridges due to the excellent 
mechanical properties (Shanmugam and Lakshmi, 2011). Curved bridges often exist due to the traffic 
line, and piers are often fixed connected to in order to ensure the integrity of curved bridges. Different 
from the straight bridges, the stiffness centre and the mass centre of the curved bridges do not locate at 
the same position, so the torsion effect will be created in the piers of curved bridges when horizontal 
earthquake happened. So the piers bear the compression-bending-torsion combined action.  

The tests on concrete filled steel tubes members with circular section under pure static torsion 
have been carried out by Xu and Gong (1991), Beck and Kiyomiya (2003). Then Han et al. (2007) 
have used the three-dimensional refined finite element method to study the torsion behavior of 
concrete filled steel tube columns, and then the simplified design method was proposed by the 
regression analysis. Lee et al. (2009) have proposed a theoretical model for analyzing concrete filled 
steel tubes under pure static torsion with good agreement.  
  

 

  
Figure 1.1 Fiber beam-column model considering torsion for steel-concrete composite curved girder bridges 

  



The literatures available now have proved that the fiber beam-column model used for predicting 
the response of structures under earthquake has high solution efficiency and precision (Ambrisi and 
Filippou, 1999). However, when concrete filled steel tubes are subjected to torsion, the shear stress 
will be produced on the section, so the torsion effect can not be considered. In this paper, A new fiber 
beam-column element is developed based on the traditional fiber beam-column model in order to 
simulate the mechanical behavior of circular concrete filled steel tubes subjected to combined 
compression-bending-torsion load as shown in Figure1.1. 
  
  
2. CONSTITUTIVE LAWS 
  

The reference frame for the fiber beam-column element is the local coordinate system X
——

,Y
——

, Z
——

, 
while X,Y, Z denotes the global reference system. The longitudinal axis X

——

 is the union of geometric 
centroids of each section. There are totally six degrees for each node of the two node beam-column 
element considering torsion effect. Three concentrate force Fx, Fy, Fz and three moment Mx, My, Mz are 
included in the nodal generalized force components, and three displacement Δx, Δy, Δz and three 
rotation angle θx, θy, θz are included in the nodal generalized displacement components. Therefore, 
there are totally twelve components in the element generalized force vector Qe and the element 
generalized displacement vector qe of the fiber beam-column element respectively. The element 
stiffness matrix Ke is a 12×12 square matrix.  

In the following parts, the element force vector Qe and element stiffness matrix Ke in the global 
coordinate system will be calculated from the element displacement vector qe through a serious 
decomposition and integrated processes. 
  
2.1. Transformation from global coordinate system to local element coordinate system 
  

According to the geometrical relations in the three dimensional space, the transformation matrix 
V between the global coordinate system and local element coordinate system can be obtained as: 
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The transformation matrix V is a 12×12 block square matrix composed by four 3x3 square 

matrixes, which can be calculated as: 
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Where ex

JJG
 is the vector subtracted the coordinate (x1, y1, z1) of node 1 from the coordinate (x2, y2, z2) 

of node 2, ey
JJG

 is the vector perpendicular to the axis, ez
JG

 is the cross product of ex
JJG

 and ey
JJG

. 
Then the element generalized displacement in the local element coordinate system can be 

calculated as the product of the transformation matrix and the element generalized displacement in the 
global coordinate system: 
  

eeq V q= i   (2.3) 
  
2.2. Transformation from element displacement to section displacement at integration point 
  



The linear shape function is chosen for the deformation field of the fiber beam-column element. 
The shape function matrix for calculating the section generalize displacement vector in the local 
element coordinate system can be directly obtained as: 
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Where φ1(x)=1-x/L，φ2(x)= x/L, L is the length of the element。 

Therefore, the section generalized displacement vector at integration points can be calculated as 
the product of the shape function matrix and the element generalized displacement vector: 
  

e( ) ( )q N qx x= i  (2.5) 
  
2.3. Transformation from section displacement to section generalize strain  
  

Based on the deformation compatibility principle, the section generalize strain vector d={ε x  γy  
γz  φx  φy  φz }T can be obtained by differentiating the section generalized displacement along the 
longitudinal direction of the element: 
  

ed( ) q'( ) N'( ) qx x x= = i  (2.6) 
  
2.4. Transformation from section generalize strain to strain of fibers  
  

In the local element coordinate system, the section of the concrete filled steel tube is divided into 
fibers, including concrete fibers and steel fibers. The strain matrix E of all the fibers is defined as: 
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Where ei is the strain vector of the ith fiber, including the normal strain εi and the shear strain γyi, γzi, n 
is the number of the fibers. 
  

 
  

Figure 2.1 Assumption for normal strain and shear strain distribution 
  

The plane section assumption for the normal strain and the linear distribution assumption for the 
shear strain produced by the torsion moment of circular concrete filled steel tube are used as shown in 
Figure 2.1. Therefore, the strain vector ei of each fiber can be obtained as:  
  

i ie u d= i  (2.8) 
  
Where ui is the position function of the ith fiber, which can be expressed as: 
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Where yi and zi are the coordinate of the ith fiber in the local element coordinate system. 

Composing the position function of all the fibers, the matrix U is obtained as: 
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Therefore, the relation between the strain matrix E of all the fibers on the section and the section 
generalized strain vector d can be established as:  
  

E U d= i  (2.11) 
  
2.5. Transformation from strain of fibers to stress of fibers  
  

The stress matrix S of fibers and the tangential stiffness matrix T of fibers are defined as: 
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Where, si is the stress vector of the ith fiber, including the normal stress σi and the shear stress τyi,τzi. ti 
is the tangential stiffness vector of the ith fiber, including the normal tangential stiffness Εi and the 
shear tangential stiffness Gyi and Gzi. n is the number of fibers. 

The procedures using the material constitutive model to obtain the stress matrix S of fibers and 
the tangential stiffness matrix T of fibers will be given in Part 3 of this paper in detail. 
  
2.6. Transformation from stress of fibers to section generalize stress  
  

The section generalized stress vector D(x) ={N, Vy, Vz, T, My, Mz}T can be directly obtained from 
the stress matrix S of fibers by integrating the stress of all the fibers. Since the nonlinear shear 
behavior of concrete filled steel tubes cannot be considered in the element proposed by this paper, the 
linear relations are used for the shear behavior of the section. The integration equations of the section 
are given below: 
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Where A is the area of the section, Sy and Sz are the elastic shear stiffness of the section which can be 
calculated by the methods proposed by James and Barry (2008). 

According to the principle of virtual work, the virtual work δW1 done by the section generalized 
stress D on the section generalized virtual strain δd is equal to the virtual work δW2 done by the stress 
of all the fibers of the section on the corresponding virtual strain： 
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1 2δW =δW  
  
Where S = T·E = T·(U·d), The matrix A is a diagonal matrix composed by the area of each fiber of the 
section:  
  

1 k nA diag( , ... , ..., )A A A=  (2.17) 
  

Introducing Eqn. 2.11 into Eqn. 2.16, the stiffness matrix k(x) of the section at the integration 
point in the local element coordinate system can be obtained as:  
  

T
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2.7. Transformation from section generalize stress to element nodal force  
  

Introducing Eqn. 2.4, the element force vector in the local element coordinate system can be 
calculated by integrating the section generalized stress of all the integration points of the element: 
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According to the principle of virtual work, the virtual work δW1 done by the element force on the 

element virtual displacement is equal to the virtual work δW2 done by the section generalized stress 
D(x) of all the integration points on the corresponding section generalized virtual strain δd(x): 
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Introducing Eqn. 2.11 into Eqn. 2.20, the element stiffness matrix in the local element coordinate 
system can be obtained as:  
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2.8. Transformation from local element coordinate system to global coordinate system 
  

Since the element force vector and the element stiffness matrix in the local element coordinate 
system cannot be used in the finite element analysis for the global structure, the transformation to the 
global coordinate system is needed. Introducing the geometrical transformation matrix in Eqn. 2.1, the 
element force vector Qe and the element stiffness matrix Ke in the global coordinate system is obtained 
as: 
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3. MATERIAL EQUATIONS  
  

In this part, the procedures for obtaining the stress vector si and the tangential stiffness vector ti of 
concrete and steel fibers based on material constitutive models are illustrated in detail. 

The strain state of each fiber is normal-shear state, so the uniaxial material stress-strain 



relationship is no longer suitable for the material model of fibers. Firstly, the two shear strain γyi and γzi 
produced by torsion in the two mutual perpendicular direction in the local element coordinate system 
need to be vector superimposed, so the total shear strain γi of the ith fiber can be calculated as:  
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Combined with the normal strain εi of the ith fiber, the general strain space of the ith fiber is 

obtained. In order to transform the general strain space to the general stress space, strain compatibility 
equations, stress equilibrium equations and material constitutive equations must be used, which will be 
introduced in detail as following. 
  
3.1. Concrete 
  

Because the constitutive law is relatively complicated for the concrete fiber at normal-shear strain 
state, the general coordinate system of the concrete fiber should be changed into the principal strain 
coordinate system. Then the concrete constitutive model considering the compression softening effect 
in the principal strain space can be used. According to the strain compatibility condition, the principal 
strain vector epi of the ith concrete fiber can be calculated as:  
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Where εpti and εpci are the principal tension strain and principal compression strain of the ith fiber 
respectively. αi is the inclination of the principal strain space which can be calculated as: 
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In the principal strain space, introducing the concrete constitutive equations, the principal stress 
vector spi of the ith fiber can be obtained as: 
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Where σpti and σpci are the principal tension stress and principal compression stress of the ith fiber 
respectively, which can be calculated based on the concrete constitutive equations: 
  

( )pti t0 pti,Fσ ε ε=  (2.28) 
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Where F is the functions for calculating the stress-strain relationships of the concrete considering 
confined effect, εt0 and εc0 are the tension peak strain and the compression peak strain of the confined 
concrete, ζ  is the compression softening coefficient used to consider the influence of the concrete 
cracks in the principal tension direction on the behavior of the concrete in the principal compression 
direction.  
  
3.1.1 Uniaxial stress-strain relations of confined concrete 

The compression stress-strain relationships of confined concrete proposed by Han (2007) are 
used. The skeleton curves for circular concrete filled steel tube are: 
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Where x=ε/ε0，F=σ/σ0，σ0=[1+(-0.054ξ2+0.4ξ)(24/fc' )0.45] fc'，ε0=εcc+[1400+800(fc'/24-1)]ξ 0.2(με)，
εcc=1300+12.5 fc' (με)，q=ξ0.745/(2+ξ)，β=(2.36×10-5)[0.25+(x-0.5)7] fc'2×3.51×10-4。fc' is the compressive 
strength of standard cylinder concrete. 

The tension stress-strain relationships of confined concrete is assumed to be as the same as that of 
the common concrete. The tension stress-strain relation before the strain reaches the tension peak 
strain is linear elastic, and the elastic tension modulus is equal to the elastic compression modulus. The 
smeared crack model is used for describing the post cracking behavior of concrete, and the linear 
relationship is used for descending stage of the stress-strain curve of the post-cracking concrete.. 
  
3.1.2 Softening coefficient 

In the principal stress space of the concrete fiber, the peak strain and stress were both lower than 
those at uniaxial compression stress state, which was defined as “compression softening effect”. The 
compression softening coefficient for reducing the peak stress and strain in the principal compression 
direction was proposed in order to consider the compression softening effect due to cracking in the 
principal tension direction. The method for calculating the compression softening coefficient ζ 
proposed by (Belarbi and Hsu, 1995) is used in this paper: 
  

pt1.0 / 1 400ζ ε= +  (2.31) 
  
Where εpt is the principal tension strain. 

After the principal stress space of the concrete fiber is obtained, the general stress space of the ith 
concrete fiber can be calculated based on the stress equilibrium conditions, so the stress vector of the 
ith concrete fiber in the general stress space is:  
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3.2 Steel 
  

The perfect elastic-plastic model is chosen for the steel material. In the elastic stage, the 
stress-strain relationship can be determined as:  
  

eσ D εi=  (2.33) 
  
Where σ ={σs, τs }T is the stress vector of the steel fiber, ε ={ε s, γs }T is the strain vector, and De is the 
elastic Jacobian matrix given below directly： 
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Where Es and Gs are the Young modulus and elastic shear modulus of the steel material. 

The Classic Von-Mises yield criterion and the associated flow rule are chosen for the steel 
material (Chen, 2004). Through several steps of derivations and transformations based on principles in 
elasticity and plasticity mechanics, the relationship between the incremental stress vector dσ and the 
incremental strain vector dε  in the elastic-plastic stage can be obtained as:  
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Where Dep is the Jacobian matrix of the steel material at elastic-plastic stage： 
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In this section, the stress-strain relationship of steel fibers is obtained, so the general strain space 

of steel fibers can be transformed into the general stress space.  
Through the procedures in part 3.1 and part 3.2, the general stress space of concrete and steel 

fibers are obtained from the general strain space. Then the stress vector si={σi, τyi, τzi }T of the ith fiber 
in the local element coordinate system can be composed, and the tangential stiffness vector ti={Εi, Gyi, 
Gzi } T of the ith fiber can be also calculated based on the incremental stress-strain relationship of 
fibers.  
  
  
4 SOLUTION AND VERIFICATIONS 
  

Based on the procedures shown in part 3 and the Newton-Raphson iterative solution method, a 
nonlinear analysis program is developed using FORTRAN language in order to use the fiber 
beam-column element considering torsion. Therefore, the combined compression-bending-torsion 
effect can be considered in the concrete filled steel tube columns. 

The predicted results and test results of concrete filled steel tube columns subjected to combined 
compression-bending-torsion load are shown in Figure 3.1. From the comparison it can be seen that 
the proposed fiber beam-column element considering torsion effect has high accuracy in predicting the 
torsion behavior of concrete filled steel tube columns subjected to combined compression bending and 
torsion load. Furthermore, compared with the traditional three-dimensional refined finite element 
model, the high modeling speed and solution speed can be achieved using the fiber beam-column 
model considering torsion effect proposed by this paper.  
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Figure 3.1 Comparison between predicted results and test results  
  
  



5 CONCLUSIONS 
  

A new fiber beam-column element considering torsion effect for analyzing the nonlinear behavior 
of concrete filled steel tube columns subjected compression-bending-torsion combined action was 
proposed, and a nonlinear solution program using the Newton-Raphson method for obtaining the 
entire loading history was also developed. The proposed fiber beam-column model considering torsion 
effect had high modeling speed and solution speed, so the torsion behavior of concrete filled steel tube 
columns can be analyzed in detail. 
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