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SUMMARY: 
The recent large earthquakes have emphasized the importance of earthquake loss mitigation and how earthquake 
early warning (EEW) systems can help. An EEW system detects an earthquake initiation based on a seismic 
sensor network and broadcasts a warning of the predicted location and magnitude shortly before an earthquake 
hits a site. The typical range of this lead time is around tens of seconds to a minute, which becomes a huge 
challenge for applications taking advantage of EEW. As a result, a robust automated decision process about 
whether to initiate a mitigation action is essential. Recent approaches propose taking an action upon exceedance 
of a fixed threshold for an intensity measure or damage or loss measure, but the determination of the threshold 
value remains as an open-ended question. In this study, a more robust decision criterion based on a new 
cost-benefit analysis procedure is proposed as part of an earthquake probability-based automated 
decision-making (ePAD) framework and an example is presented.  
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1. INTRODUCTION 
 
Due to the large uncertainty about the stress and strength distributions within the tectonic plates on 
Earth, earthquakes are one of the most unpredictable natural hazards. Accurate prediction of when an 
earthquake will happen is still not possible, but the concept of earthquake early warning can be 
achieved because of the rapid development of computing power and network communication (Heaton 
1985). However, the EEW information is highly uncertain and provides only a limited amount of 
warning time. The lead time before seismic waves arrive at a site may range from a few seconds to a 
minute or so, corresponding to the time at which the strong shaking arrives at a site tarr and current 
time t, i.e. Tlead = tarr – t. Human intervention for loss mitigation would likely use up too much of the 
short lead time, preventing the mitigation from being activated in a timely manner. Therefore, an 
automated decision-making framework is essential for implementing many engineering applications of 
EEW.  
 
Recent proposed decision methods use exceedance of a threshold for a predicted ground shaking 
measure (Grasso, Beck and Manfredi 2007, Iervolino, Giorgio and Manfredi 2007), but a robust 
method for determining the threshold is needed. Using cost-benefit analyses, an earthquake 
probability-based automated decision-making (ePAD) framework is developed to handle this problem, 
and also other major challenges, such as performing multi-action decision-making and including lead 
time uncertainty into the decision-making. In this paper, because of space limitation, we focus on how 
the ePAD framework can be used to compare and interpret different decision methods. 
 
 
2. BACKGROUND 
 
2.1. Fundamental Concepts and Current Development of EEW 
 
A major earthquake excites various kinds of waves, including P-waves, S-waves and surface waves. 
The P-wave is the fastest traveling wave with the least destructive power, while the S-wave and the 



surface waves are slower waves with much larger destructive power. EEW exploits two important 
speed differences to provide early warning before the destructive waves arrive a site: 1) The speed 
difference between the P-waves and S-waves; 2) The speed difference between seismic waves and 
electronic signals (Satriano et al. 2011). Once a seismic network detects P-wave information, the EEW 
system will perform fast prediction of the earthquake magnitude, hypocenter location and origin time. 
As the seismic waves propagate, the seismic network will receive more data and continuously update 
the EEW predictions. Since the electronic signals travel a lot faster than seismic waves, the warning 
time provided by EEW system depends heavily on the distance between a site and the hypocenter. 
General warning time is around a few seconds to a minute or so. 
 
Japan has had a national EEW system for roughly 6 years. During the Tohoku earthquake in March 
2011 (Hoshiba et al. 2011), EEW is proven to be effective for providing early warning. Other regions, 
such as Taiwan, Istanbul in Turkey, Mexico City and Bucharest in Romania, have more localized 
regional systems (Allen et al. 2009b). Currently, an EEW system called the California Integrated 
Seismic Network (CISN) ShakeAlert System is also under beta-testing in California, USA. As 
currently planned, ShakeAlert is a relatively unique system because it will combine the outputs of 
three early warning algorithms, each based on a different theory: τc-Pd on-site algorithm (Bose et al. 
2009), Earthquake Alarms Systems (ElarmS) (Allen et al. 2009a), and Virtual Seismologist (V-S) 
(Cua and Heaton 2007) (see Fig. 2.1). All three systems receive data from the same CISN seismic 
network and run their own algorithm to produce probability distribution functions (PDF) of earthquake 
magnitude, location estimation and origin time. Their output will be integrated in a central decision 
module, which will produce a PDF for earthquake magnitude, location and origin time. 
 

 
 

Figure 2.1. Planned structure of CISN ShakeAlert system. 
 
2.2. Examples of Existing and Potential EEW Applications 
 
Despite the rapid development of EEW systems around the world, its engineering applications lag 
behind. Some potential and existing applications are listed in Fig. 2.2. Due to the uncertainty of EEW 
predictions and short warning times, existing applications are only those with a low activation cost and 
a simple procedure. One of the most successful engineering applications of EEW is the Urgent 
Earthquake Detection and Alarm System (UrEDAS) of the Japan Railway Group (Nakamura, Sita and 
Sato 2011) for the high-speed Shinkansen trains. Other examples from recent literature include 
elevator control in a building (Kubo et al. 2011), semi-active structural control of a highway bridge 
(Maddaloni, Caterino and Occhiuzzi 2011) and seismic isolation system by air-bearings (Fujita et al. 
2011). Recently, the concept of integrating EEW with structural health monitoring (SHM) in local 
damage detection (Rainieri, Fabbrocino and Cosenza 2011) or global loss assessment (Hilbring 2010) 
is mentioned by some research groups in Europe. Also, we have developed a synergistic framework 
between EEW and SHM to optimize the use of the information provided by both systems under a 
robust Bayesian probabilistic framework (Wu and Beck 2012).  



 
 

 Figure 2.2. Categorization of potential and existing EEW applications. 
 
2.3. Review of Recent Proposed Decision Framework for EEW 
 
In many EEW applications, due to the limitation of short lead times, an automated decision-making 
system is needed to decide whether to trigger a mitigation action or not when the EEW information is 
received. As the information is uncertain, one could use a decision framework which activates an 
action when the probability of a ground shaking intensity measure (IM) exceeding some pre-set 
threshold im0 is greater than some fixed value P0. However, the determination of both threshold values 
im0 and P0 remains as an open-ended question. 
 
In Grasso, Beck and Manfredi (2007), the authors introduced a tradeoff between the expected loss of 
false alarm and the expected loss of missed alarm to determine P0. An action is activated when the 
expected loss of missed alarm is larger than the expected loss of false alarm. They show that this is 
indeed equivalent to the probability of IM exceeding a specified threshold im0 being greater than a 
value P0 that depends on these expected losses. A more detailed explanation is included in Section 
3.2.  
 
Iervolino, Giorgio and Manfredi (2007) examined a decision framework to decide when to trigger an 
earthquake alarm inside a building. Instead of the threshold-based method, an expected-loss based 
method using the Performance-Based Earthquake Engineering (PBEE) approach (Porter 2003) is 
considered.  
 
These methods make significant contribution to automating decisions for mitigation actions. However, 
there are still limitations for practical usage: 1) These decision frameworks generally apply to a single 
action decision, while some of the EEW applications involve decision making for multiple actions or a 
sequence of actions, such as transportation network problems, and so can not be applied directly; 2) 
The decision for most EEW applications is extremely time sensitive due to a short and uncertain lead 
time. We have developed a decision framework, called earthquake probability-based automated 
decision-making (ePAD), to handle both of these previously neglected concerns. In this paper, we 
focus on comparing the differences between these published decision methods using our ePAD 
framework. 
 
 
3. DECISION FRAMEWORK 
 
3.1. Basic Decision Framework for ePAD 
 
EEW systems provide estimation of earthquake magnitude, hypocenter location and origin time based 
on early detection of the seismic waves. An optimal decision framework should be able to utilize all 
three pieces of information to provide a rational decision for taking mitigation actions. ePAD is a 



cost-benefit analysis-based decision framework that incorporates all the information with explicit 
treatment of its uncertainty. It is a very general framework that provides a platform for comparing 
many other decision methods. 
 
A decision is usually made between available choices by balancing different tradeoffs from the 
consequences of the choices. Cost-benefit analyses are generally accepted as a rational way of 
quantifying different tradeoffs. Consequently, ePAD makes decisions solely based on a cost-benefit 
criterion and chooses an optimal action from a set of possible mitigation actions (including no action). 
For example, in the simplest binary decision situation, the alternatives are To Take Action or Not To 
Take Action. Taking a mitigation action often leads to some kind of interruption to the operation of the 
facility, business or society, while not taking an action induces a risk of larger earthquake losses. To 
compare possibly disparate consequences, they need to be converted into a single metric, called here a 
Decision Variable (DV), such as economic loss. Once we have a consistent metric for tradeoff 
comparisons, a rational decision-making procedure can be based on comparing the expected values of 
the utility function of DV, denoted as U(DV), conditional on the EEW data. The decision criterion can 
be specified mathematically as follows. 
 
Let:  Ωa = {a0, a1, … , an}, a set of alternative mitigation actions, where a0 denotes taking no action  
 E[X|Y,a] = expected value of X given Y for action a 
 D(t) = data coming from EEW as a function of time t 
 
then: 
 

Take action â = argmaxa∈Ωa
{E[U(DV ) |D(t),a]}  (3.1) 

 
Decisions based on expected utility can be categorized into risk-neutral, risk-averse and risk-seeking 
depending on the shape of the U(DV) curve; for example, if DV is economic loss in dollars and a 
risk-neutral decision is to be made, then U(DV) = -DV is appropriate. In Section 3.2, this concept is 
revisited to compare various decision frameworks. 
 
Depending on the complexity of the mitigation actions in an EEW application, the calculation of 
expected-DV values may be difficult. As in Iervolino, Giorgio and Manfredi (2007), a PBEE 
methodology may be used to calculate the expected value, such as the PEER PBEE methodology 
shown in Fig. 3.1 and Eqn. 3.2, 3.3 and 3.4. 
 

  
 

Figure 3.1. Information flow of PBEE-based EEW. 
 

E[U(DV ) |D(t),a] = E[U(DV ) | IM,Tlead,a]p(IM |D(t))p(Tlead |D(t))d IM dTlead∫  (3.2) 

 
where 

 
p(IM |D(t)) = p(IM |M,R)p(M,R |D(t))dM dR∫  (3.3) 

 



and 
 
E[U(DV ) | IM,Tlead,a] = U(DV )∫ p(DV | DM,a)p(DM | EDP,a)p(EDP | IM,a)dDVdDMdEDP  (3.4) 

     
Eqn. 3.4 is specific to the structural facility and it represents a pre-determined model for action a. 
Depending on how the models are setup, it may lead to different types of decision framework.  
 
3.2. A Utility Point-of-view for Comparing Different Methods 
 
For the convenience of comparison, let us consider a simplified case where Ωa = {a0, a1}, IM is a 
scalar such as the acceleration response spectral value Sa at some period, and the utility function 
U(DV) is independent of Tlead. This is consistent with the decision frameworks mentioned in Section 
2.3. For this simplified case, the previous decision criterion in Eqn. 3.1 becomes: 
 

Take action iff  E[U(DV ) |D(t),a1]> E[U(DV ) |D(t),a0 ]  (3.5) 
 
This can be rewritten in the following form: 
 

Take action iff  E[U(DV ) | IM,a1]− E[U(DV ) | IM,a0 ]( )∫ p(IM |D(t))dIM > 0  (3.6) 

 
Now, define the ePAD Decision Function: DFePAD(IM) = E[U(DV)|IM, a1] – E[U(DV)|IM, a0]. Then, 
DFePAD is effectively a utility function for IM that is used for the decision-making. This is the Decision 
Function appropriate for the decision criterion of Iervolino, Giorgio and Manfredi (2007) where a 
PBEE methodology is used to evaluate the expected values. 
 
For the threshold method mentioned in Section 2.3, one would determine fixed thresholds im0 and P0, 
perhaps based on engineering judgement, and the decision criterion would be: 
 

Take action iff  P(IM > im0 |D(t)) > P0  (3.7) 
 
Using the Heaviside step function H(x), this can be rewritten in the following form: 
 

Take action iff  H (IM − im0 )− P0( ) p(IM |D(t))dIM∫ > 0  (3.8) 

 
Thus, the ePAD Decision Function becomes for the threshold method: DFTM(IM) = H(IM – im0) – P0. 
 
For Grasso, Beck and Manfredi (2007), given a pre-specified threshold im0 for IM that is set by the 
designers or operators of the facilities being protected, action is taken if and only if the expected cost 
of no action is greater than the expected cost of action. Two important expected costs are introduced: 
1) An expected cost, Cfa, due to a false alarm is assumed if the mitigation action is taken but the IM at 
a site is less than im0; 2) An expected cost, Csave, due to a missed alarm, and so a missed opportunity 
for mitigating the expected earthquake economic loss by Csave, is assumed if no action is taken but the 
IM at a site is larger than im0. As a result, the decision criterion can be written as: 
 

Take action iff  CsaveP(IM > im0 |D(t)) >CfaP(IM ≤ im0 |D(t))  (3.9) 
 
This can be rewritten in the following form: 
 

Take action iff  H (IM − im0 )−
Cfa

Csave +Cfa

⎛

⎝⎜
⎞

⎠⎟
p(IM |D(t))dIM∫ > 0  (3.10) 



 
If we take P0 = Cfa/(Csave + Cfa) under this method, then its Decision Function is the same as 
DFTM(IM). 
 
Another possible method is to take action if the occurrence of a specific damage state (DMS) exceeds a 
certain threshold probability. For example, one may take a mitigation action when the probability of 
severe building damage exceeds PDM. The decision criterion can be written as follow: 
 

Take action iff  P(DMS |D(t)) > PDM  (3.11) 
 
This can be rewritten in the following form: 
 

Take action iff  P(DMS | IM )− PDM( ) p(IM |D(t))dIM∫ > 0  (3.12) 

 
Thus, the Decision Function for this case is: DFDM(IM) = P(DMS|IM) – PDM.  
 
Now, let us define Decision Contour as a contour that separates the region of a0 (no action) and a1 
(take action) in an appropriate decision parameter space. For instance, p(IM|D(t)) is commonly 
modelled as a Gaussian or lognormal distribution in civil structure applications. One can define 
p(IM|D(t)) in a two-dimensional space based on the mean and variance of IM. Hence, the Decision 
Contour is a curve in this space that separates the region of a0 and a1.  
 
Different types of Decision Function will result in different shapes of Decision Contour. Let µIM and 
σ2

IM be the mean and variance of IM respectively, the decision contour can be found by either directly 
solving for the µIM and σ2

IM roots of the decision criterion or first to create a fine mesh of µIM and σ2
IM, 

then simulate and record the result of all decisions, and a boundary curve can be observed separating 
the region of a0 and a1. Fig. 3.2 shows a general shape of each decision function mentioned above. 
Analysis of decision contours obtained from different decision functions is performed in Section 4.2 
based on an example.  
 
In civil structure applications, P(DMS|IM) can be represented by a fragility curve, which is usually a 
type of sigmoid function, and DMS is usually a vector of discrete damage states instead of a single 
damage state. Also, DFePAD can be viewed as a linear combination of sigmoid functions, which is also 
a sigmoid function, because E[U(DV)|IM,a] = Σk{E[U(DV)|DMk,a]P(DMk|IM,a)}, where 
E[U(DV)|DMk,a] is known once a loss model is defined for each DMk. Therefore, one can determine 
PDM by fitting DFePAD with DFDM of any chosen DMS. The regression problem can be solved by 
optimizing an objective function, for example, least-squares matching between the Decision Contours 
of DFePAD and DFDM. An example of how to determine the effective PDM in DFDM and im0 in DFTM 
using DFePAD is covered in Section 4.1. 
 

 
 

Figure 3.2. General shapes of decision functions. 
 
3.3. Other Advantages of ePAD 
 
In some EEW applications, more than one action is available. For example, in a complex bridge 



network, one may consider closing some of the bridges when EEW is received. Let n be the number of 
bridges, then there will be 2n possible closure combinations to explore to maximize the expected utility 
function. ePAD is a very general decision framework that allows searching for an optimal choice 
among multiple actions, while this cannot be readily done by other published decision frameworks. 
Furthermore, since the lead time for the EEW system is both extremely short and uncertain, the time 
factor plays an important role in any decision-making. Due to the uncertain nature of EEW 
information, the decision for optimal mitigation actions can have dramatic change depending on the 
amount of time left for action. Some actions may have much less benefit if they are incomplete. 
Therefore, when the lead time is too short to complete an action, the cost-benefit analysis should not 
be the same as the case that there is sufficient time to complete an action. On the other hand, some 
EEW systems may provide continual updates of information. Then, if there is sufficient time to wait 
for new EEW information and complete the mitigation actions, one may want to delay making any 
decision so as to hope for more accurate EEW updates in the future. All these factors are included in 
the full ePAD framework, which, because of space limitation here, we will present at a later time. 
 
 
4. EXAMPLE AND RESULTS 
 
Let us take the PEER benchmark building studied in Haselton et al. (2007) and Goulet et al. (2007) as 
the target structure for our example. It is a hypothetical four-story reinforced concrete moment-frame 
building designed according to the 2003 International Building Code, located on deep sediment near 
the center of the Los Angeles basin, at 33.996◦N, 118.162◦W, south of downtown Los Angeles. Their 
study includes the details of structural models, fragility curves and annual loss assessment. In our 
example, let us consider a single action a1: broadcasting an evacuation alarm. This action is chosen for 
testing the framework, but in real earthquakes, it is always encouraged to practice drop, cover and 
hold, instead of trying to exit from a building.  
 
4.1. Threshold Determination with ePAD Framework 
 
Determining a reasonable value for thresholds PDM and im0 in DFDM and DFTM, respectively, is a 
challenging problem. In the ePAD framework, this can be solved based on a cost-benefit analysis 
approach. After determining an appropriate loss model, im0 and PDM can be found by fitting the 
decision contour of DFDM to the decision contour of DFePAD. Least-squares matching between the 
Decision Contours of DFePAD and DFDM is chosen for convenience in this example. 
 
In our example, the action tradeoff is between the expected life saving and business downtime cost 
due to triggering an evacuation alarm. Two damage states are considered: Collapse (DMc) and Partial 
Collapse (DMpc). IM is taken to be the spectral acceleration at the first mode period, SA(T1). The 
fragility curves for both damage states are shown in Fig. 4.1. 
 

 
 

Figure 4.1. Structural model (left) and decision function (right) for the benchmark building. 
 
In the PEER study, the expected life loss for collapse and partial collapse was taken as 20 and 2, 
respectively. Expected injury is converted into equivalent life loss and is included in the analysis. Let 
us assume a life saving factor of 0.4 and 0.8 for collapse and partial collapse respectively. Hence, 



given fragility curves for collapse and partial collapse, P(DMc|SA) and P(DMpc|SA), E[U(DV)|SA,a0] 
can be calculated as follow, assuming DV is the earthquake loss: 
 

E[U(DV ) | SA,a0 ] = 0.4 ⋅20 ⋅P(DMc | SA)+ 0.8 ⋅2 ⋅P(DMpc | SA)  (4.1) 
 
Now, E[U(DV)|SA,a1] should be estimated by converting the business downtime into an equivalent life 
saving constant. Here, we assume a reasonably low value of 0.2. As a result, DFePAD can be found as 
shown in Fig. 4.1. Let us model p(SA|D(t)) as a lognormal distribution. Then, a decision contour can 
be found in the 2-D space of the mean and variance of SA. We can now determine PDM by 
least-squares matching between the decision contours of DFePAD and DFDM, where P(DM|IM) in DFDM 
is taken to be P(DMc|SA). Fig. 4.2 shows the resulting decision contours of both DFePAD and DFDM 
after fitting. 
 

 
 

Figure 4.2. Decision contours used for determining im0 and P0. Region above a curve represents taking action, 
while region below a curve represents no action. 

 
Using relatively low business downtime estimation, we obtained relatively conservative threshold 
values for both im0 and PDM. Since im0 is the critical IM value when uncertainty is zero, it is found to 
be 0.36g from Fig. 4.2. For the damage-state-based method, the alarm is triggered when the 
probability of collapse exceeds 0.006. One can observe that the decision contour of DFDM is steeper 
than the one of DFePAD, which leads to a more conservative decision, because as uncertainty increases, 
the alarm is always triggered at a lower mean value of SA if their vertical interceptions (i.e. im0) are 
the same. 
 
4.2. Influence of Decision Function on Decision Contour 
 
In this section, we further investigate how various decision functions lead to different decision 
contours, thus, different decision behaviors. For consistency in the following analysis, we also use a 
lognormal distribution to model p(SA|D(t)), where ln(µ) and σ are the mean and standard deviation of 
ln(SA) respectively. We let sa0 be the pre-set threshold for SA. 
 
For the threshold method, we can obtain a closed form solution for the decision contour as follows: 
 

P(SA > sa0 |D(t)) =
1
2
− 1
2
erf ln(sa0 )− ln(µ)

2σ
⎡
⎣⎢

⎤
⎦⎥
= P0  (4.2) 

 
implies that: 
 

µ = sa0( )e− 2erf −1 1−2P0[ ]( )σ  (4.3) 
 
or 
 

ln(µ) = ln(sa0 )− 2erf −1 1− 2P0[ ]σ  (4.4) 



Fig. 4.3 shows the corresponding decision contours for a fixed sa0 and varying P0. One can see that P0 
= 0.5 refers to a risk-neutral behavior, while P0 less or greater than 0.5 refers to a risk-averse or 
risk-taking behavior, respectively. 
 

 
 

Figure 4.3. Decision curves for traditional threshold method. Region above a curve represents taking action, 
while region below a curve represents no action. 

 
For the damage state-based method and ePAD, a similar analysis can be done numerically. Fig. 4.4 
shows the corresponding decision contours for both methods with varying PDM and E[U(DV)|SA,a0]. 
 

 
 

Figure 4.4. Decision curves for DFDM (left) and DFePAD (right). Region above a curve represents taking action, 
while region below a curve represents no action. 

 
Note that unlike the threshold method, varying the parameters in DFDM and DFePAD does not change 
the shape of the decision contours, but rather shifts the critical SA value, because for these two 
methods, the shape of the contours is controlled by the fragility model of the target structure. Since 
both the collapse fragility curve and the chosen loss model put larger emphasis on the potential loss 
given by a high SA value, a risk-averse type of decision contour is obtained. With a different structural 
and loss model, the decision contour can be tuned more precisely to the structural owner’s 
requirements, such as changing the curvature of the contour. This is not possible for the traditional 
threshold method, because the two thresholds can only shift or rotate the contour. In fact, when the full 
ePAD framework is used, other factors, such as the influence of lead time may significantly change 
the resulting decision contours, that allows a more flexible choice of risk preference behavior. 
 
 
5. CONCLUSION  
 
The benefits and feasibility of EEW is becoming more appreciated throughout the world. It is expected 
that an EEW system will be available to the public in California in the near future. In order to 
maximize the benefits of EEW, an automated decision-making framework is essential to tackle the 
very short lead times and high uncertainty. Recent proposed methods rely on some pre-set thresholds, 
but there is a lack of a systematic way of determining the thresholds. Our proposed framework, ePAD, 
is a more general decision framework that can also be used as a tool to compare existing methods. In 



this paper, the ePAD framework, which is a cost-benefit analysis-based approach, is briefly illustrated. 
A simple case that only involves binary decision-making (whether to take a mitigation action or not) is 
studied to compare the effect of using different methods from a utility point-of-view. The concepts of 
decision function and decision contour are introduced to visualize the differences. These concepts 
from the ePAD framework allow a better understanding of the decision behavior of various methods 
that have been proposed for automated EEW decision making. 
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