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SUMMARY:

There are many historic stone arched bridges in Japan. To prevent their damage due to earthquakes and to leave
them for posterity, it is important to understand their structural integrity and failure mechanism against
earthquakes. In this study, dynamic behaviors of several stone arched bridges are simulated using the
3-dimentional DEM. Firstly, by inputting a impulse wave to the models as an input ground motion, their first
natural frequencies in three directions are computed, and their vibration characteristics are investigated.
Secondly, seismic behaviors are computed and the failure occurrence mechanism is investigated. Effects of the
material properties of the backfill and the span length on seismic behaviors and failure patterns are also
investigated. Finally, effectiveness of reinforcement by inserting mortar between stones is verified.
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1. INTRODUCTION

Masonry arches are one of the oldest structural elements that have been used for thousands of years as
parts of bridges, tunnels, vaulted roofs, etc. There are many masonry arched structures which are
designated as world heritages.

Stone arched bridges are one of the most familiar arched structures consists of stones. In Japan, many
stone arched bridges were constructed before the early Meiji era when Western construction
techniques were introduced. Since stones have corrosion resistance, many stone arched bridges are
still standing, and some of them are valued as local historic cultural heritages.

Two stones in contact have strong resistance against compression force, but they cannot resist against
any tension force. Stone arched bridges can transmit vertical loads, such as self-weight and live loads
from pedestrians or vehicles, to the ground by converting the vertical load to the compression force
between stones by arching effect. There have been several researches on assessing the structural
integrity against the vertical loads (Jiang and Esaki, 2000; Toth et al., 2009; Betti et al., 2007), and it is
well known that the stone arches have strong resistance against the vertical load. Recently, a research
for preserving a historic stone arched bridge is also conducted. Structural integrity of Nishida Bridge,
a stone arched bridge in Kagoshima, Japan, built about 150 years ago, was assessed in detail (Jiang
and Esaki, 2000). Focusing on the weathering problem, the geometrical and mechanical parameters
affected by the weathering are evaluated and its structural integrity against vertical load is confirmed
by 2-dimensional distinct element method.

Seismic loads, on the contrary, act in the horizontal directions, and they are converted to both the
compression and tension forces by arching effect. Most of the researches on stone arched bridges are
based on the static method against self-weight or live loads in 2-dimensional analysis (Jiang and Esaki,
2000; Toth et al., 20009; Betti et al., 2007), and researches based on the dynamic analysis considering
the horizontal seismic load is still scant (Rafiee et al., 2008). Since the failure behavior is
3-dimentional, the analysis in 3-dimensional is necessary, but the researches considering
3-dimensional behaviors are also still scant. One of the reasons is because the numerical tool to predict
3-dimensional dynamic behavior of masonry arches has not been established yet. Therefore, seismic
resistance of the stone arched bridges and their failure mechanism during earthquakes is not fully



understand, and it is an urgent need to develop a numerical tool for predicting failure behaviors, and to
investigate how the stone arched bridges get damage due to earthquakes.

With this background, this research aims to numerically assess the structural integrity of masonry
stone arch bridges against seismic load using the 3-dimensional distinct element method developed by
the first author. As the stone arched bridge is a discontinuous structure comprised of stones, the
mechanical behavior of the stability is mainly controlled by the contact problem between stones, so we
considered the distinct element method is an appropriate choice (Cundall, 1974). Based on the
geometrical and material properties of Nishida Bridge that can be found in the literature (Jiang and
Esaki, 2000) several models are created; a single arched ring model, an arched model with backfill
made of stones, an arched model with backfill made of stones and soil, two-span arched bridges with
backfill made of stones, etc. Firstly, by inputting an impulse wave to the models as an input ground
motion, their first natural frequencies in three directions are computed, and their vibration
characteristics are investigated. Secondly, seismic behaviors are examined and the failure occurrence
mechanism is investigated. Effects of the material properties of the backfill and the span length on
seismic behaviors and failure patterns are also investigated. Finally, effectiveness of reinforcement by
inserting mortar between stones is verified.

2. ANALYSIS METHOD
2.1. Distinct Element Method

The DEM is a numerical analysis method that computes the position of individual elements by solving
equations of motion step by step. All the elements are assumed to be rigid. Virtual springs and
dashpots in the normal and tangential directions are generated when an element comes in contact with
other elements, and the contact force acts through these generated virtual springs and dashpots. By
solving the equation of motion for each element step by step, the behavior of all elements in

combination can be traced. The forces acting on an element are the external force ( /), and the sum of
the contact forces between elements (7). Acceleration (%) of an element is calculated by
¥=(f+ ) F)/m (2.1)
where m is the element’s mass. The velocity and displacement of each element can be calculated by:
;t = ;Ct—At + j—ét—AtAt X =Xt ;Ct—AtAt (2.2)
where A is the time increment in the analysis.
Rotation is obtained from Euler's equations of motion. An equations for the &, 7,{—directions are
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in which & 7, and ¢ are the inertia axes of the coordinates, and /; and w; (i=¢, 7, ¢) respectively are the
moments of inertia and rotational velocities around the center of gravity in the inertial frame of
reference. r; (i=¢, 77, {) is the distance between the center of the gravity and the point where the
contact force, F}, is applied.

2.2 Simplified micro-modeling of masonry structure

To predict the dynamic behavior of a masonry structure using the DEM, micro-modeling of individual
components, i.e. block and mortar, is necessary. In this paper, these components are modeled in a
simple manner as shown in Fig. 1.(a) according to the past research (Lourenco, 1994). The blocks are
called units and the mortar conjunction between units is called a joint. The size of one unit is the sum
of brick size and mortar thickness. The unit is modeled as a distinct element. The joint has zero
thickness and interacts with the surfaces of adjacent units. Even for the case when there is no mortar
between blocks, the same modeling can be used assuming that the joint has no tension and bonding
strengths.
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Figure 1. Modeling of masonry structure Figure 2. Contact between elements.

2.3 Contact Force

When elements (units) come into contact or connected by joint, the spring and dashpot are generated
in the calculation. The contact model shown in Fig. 2. is the case in which a corner of element is in
contact with the other element’s face or edge. Judgment of contact is made by considering the
collocation between the two elements concerned. Increments in the spring and damping forces in the
normal and tangential directions (de,, de,, Ad,, Ad,) for the interval At are expressed by the increments
of relative displacement in those directions, An and 4s;

Ae, =K, An Ae, = K As Ad, =C,An/ At Ad, =C As/ At 2.4)
in which K, and K, and C, and C;, respectively are the spring constants and damping coefficients in
the normal and tangential directions. The spring and damping forces in each direction ([e,],, [, [d]s
[d,],) at the arbitrary time ¢ are obtained from the preceding equations;

[en]t =[en]t—At +Aen [es]t = [es]t—At + Aes [dn]t =Adn [ds]t =Ads (25)
When the spring force exceeds the tension, shear or compression strength, the contact force is
governed by the nonlinear characteristics shown in 2.4. The total contact forces in both directions are

[£,] =le, ] +1d,]; [F], =[e], +1d ], (2.6)
Force, F'in Eq. (1) is obtained by combining the above forces in the target direction.

2.4 Nonlinear Characteristics of Contact Force

The contact force is generated at contact points when two units with or without mortar between them
are in contact with each other. The mechanical characteristics of contact force are modeled by
introducing nonlinear characteristics to the contact force. The three failure modes, namely tension
mode and shear mode are defined according to the past research (Lourenco, 1994). Here we regard the
normal spring force, [e,],, per area as normal stress o, and the tangential spring force, [e,],, per area as
shear stress 7. The failure criterion as a relationship between the normal stress o and the shear stress 7
is shown in Fig. 1.(b).

2.4.1 Tension mode
In the tension mode, the necessary parameter is the tensile strength f;. The yield function is as follows.

file)y=o-1, (2.7)

When it reaches this limit, damping force is set 0.

2.4.2 Shear mode
For the shear mode, the Coulomb friction envelope is used. The required parameters are the bond
strength ¢, and the friction angle, ¢. The yield function has the following form.

fr(o)=|r|+otang—c (2.8)
When the spring force exceeds this friction limit, the tangential force is governed by the dynamic friction
and damping force is set 0. If stones are not bonded with each other by mortar, f; and ¢ are set to 0.

2.5 Spring constants and damping coefficients

It is assumed that two elements, 4 and B, are in contact, and that a contact area is S. Let G, and G be
the centers of gravity of elements 4 and B respectively. Let ¢ , be the distance from G, to the contact



area. Let /, be the distance from Gj to the contact area. Let £, and E be Young’s modulus and v

and v be Poisson’s ratios of elements 4 and B.

The spring constants in the normal and tangential directions, K, and K., are

n
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Damping coefficients in the normal and tangential directions are assumed as
C,=2h,\m,.K, C,=2h,\m, K, (2.10)

where, 4, , h;are damping constants of the dashpots. m,,. is an equivalent mass of the contact, and
obtained as follows

Myye = (P4l 4+ Pl E)S (2.11)
where p, and pj are densities of elements A and B.

3. ANALYSIS OUTLINE
3.1 Input Ground Motion

Acceleration records obtained at the Kobe Marine Observatory during the 1995 Hyogo-ken Nanbu
earthquake is used(Fig.3.). EW, NS and US components are input in x, y and z directions, respectively.
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Figure 3. Input ground motion
3.2 Analytical models

Nishida Bridge is a four-span structure. The geometry of the second span from the upper stream view
was illustrated by Jiang and Esaki (2000) based on the in situ survey. Six analytical models are created
based on the second span of Nishida Bridge as shown in Fig. 4. The actual width of Nishida bridge
with four spans are 6.2m, but the analyzed models with single or two spans are set to be 3.2m. The
models are assumed to be constructed on the fixed ground. The directions of input ground motion are
shown in Fig. 4. (a). The details of each model are as follows.

3.2.1 Model A

Model A has only an arched ring. The model has a span length of 11.36 m, rise height of 4.76 m, and
thickness of 0.64 m in accordance with the literature (Jiang and Esaki, 2000). The width of the bridge
1s assumed 3.2m, and dimensions of stones are assumed about 0.64m X 0.64mx 0.64m. The stones on
the bottom are fixed. The stones are not connected with each other by mortar, and only friction force
acts between stones in contact. The total number of elements is 165.

3.2.2 Model B

Model B has a wall made of stones on an arched ring of model A. The height is 5.8 m in accordance
with the literature (Jiang and Esaki, 2000). The length of the model is assumed to be 24m. The
dimensions of stones are assumed about 0.64mx0.64mx0.64m. The total number of elements is 1586.



3.2.3 Model C
Model C has fixed side walls in addition to Model B. The width of the side walls are 1.0m. The
material of the side wall is the same as those of the stones. The total number of elements is 1588.

3.2.4 Model D

In Model D, two walls in the front and the rear composed of stones, and soil is filled inside. Soils are
simply modeled with the cubic elements with the same size of the stones. The total number of
elements is 1448.

3.2.5 Model E
Model E has fixed side walls in addition to Model D. The total number of elements is 1450.

3.2.6 Model F
Model F is a two-span model with the fixed elements in the both sides. The length of the bridge is
36m. The total number of elements is 2043.
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Figure 4. Analytical models.
3.3 Material properties

The material properties of stones are defined based on the field survey results of Nishida Bridge (Jiang
and Esaki, 2000). Density of stones is 1.88x10° kg/m’, Young’s modulus is 1.4039x10" N/m’,
Poisson’s ratio is 0.28. As for the material properties of the ground and the soil of models D and E,
density is assumed to be 1.8x10° kg/m3, Young’s modulus is 1.9x10% N/m?, Poisson’s ratio is 0.3.
Young’s modulus is defined on the assumption that the shear velocity of the soil is 200m/s. For damping,
critical damping (4, = h,= 1.0) is assumed. These values are used to obtain spring constants and damping
coefficients in the analysis.

3.4 Failure criterion
Friction angle between stones is assumed to be 33.23 degree according to the literature (Jiang and Esaki,
2000), and that between soils and that between stone and soil are both assumed to be 30 degree. For all

stone-stone, soil-soil, and stone-soil contacts, tensile and bond strength are assumed to be 0.0.

3.5. Time interval

Cundall (1974) recommends the following time interval. From this, Az=0.00004(sec) is adopted.

At<2m/K, (3.1)



4. RESULTS
4.1 Natural frequencies

First, natural frequencies are computed by inputting impulse waves in single direction and conducting
Fourier transformation of the responses in its direction. In obtaining the responses, tensile and shear
failures between stones originally in contact were neglected to obtain the linear responses.

Table 1. shows the first natural frequency in each direction. In model A, the first natural frequencies
in x and z directions are the same and lower than that in y direction. This means that the first mode is
mainly by the inner-plane (x-z plane) deformation, and that the inner-plane deformation is more
dominant than the out-of-plane (y-z plane) deformation In model B, on the contrary, the first natural
frequencies in y and z directions are the same and lower than that in x direction. This means that the
first mode is mainly by the out-of-plane deformation, and that the out-of-plane (y-z plane) deformation
is more dominant than the inner-plane (x-z plane) deformation. This fact that the arched ring is less
deformable in the inner-plane compared to model A is because of the stiff backfill made by stones. In
model C, the fist natural frequencies in three directions are almost the same and higher than those of
models A and B due to the fixed elements in the both sides. In model D, due to the soft soil inside, the
natural frequency in three directions are lower than those of model B. In model E, the natural frequencies
in three directions are almost the same in the same manner as model C, but are lower than those of model
C due to the soft soil. In model F, the natural frequencies are almost the same in three directions and
smaller than those of model C due to its longer span length.

Table 1. 1% natural frequency in each direction

Model A Model B Model C Model D Model E Model F
X 17.6 Hz 23.9 Hz 30.2 Hz 16.8 Hz 17.1 Hz 12.4 Hz
y 24.7 Hz 17.1 Hz 30.2 Hz 9.5 Hz 17.1 Hz 12.4 Hz
z 17.6 Hz 17.1 Hz 30.2 Hz 9.5 Hz 17.1 Hz 12.4Hz

4.2 Seismic behavior, model A

Seismic behavior of model A is shown in Fig. 5. Before 4.0 sec while the input acceleration is small,
the model stand still against its self weight. At 4.0 sec, the first horizontal crack can be seen. At 4.2sec,
three cracks are found, and the arch ring are separated into 5 parts like the character of “M” at 4.4 sec,
and collapsed. Inner-plane deformation is dominant. It is found that the structure is easily deformed in
the inner-plane, and once the failure occurs, the structure starts to fall down due to its instable shape.
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Figure 5. Seismic behavior, model A

4.3 Seismic behavior, model B

Seismic behavior of model B is shown in Fig. 6. At 4.0 sec, no cracks can be seen in the arched ring.
Because model B has stiff backfill, the deformation of arched ring is less likely to occur. The main



deformation is the out-of-plane deformation of the walls in the both sides. At 4.4 sec, the
out-of-deformation of can be seen. The walls on the left and right sides move in the opposite directions,
and this causes the torsional behavior. Due to this torsional behavior, cracks are generated as can been
seen in the picture of 4.8 sec. At 5.2 sec, stone elements in the left sides started to fall down due to its
larger out-of-plane deformation, but no elements fell from the arched ring. It is found that the cracks in
the arched ring are generated due to wall’s out-of-plane deformation with the torsional behavior. This
indicates that to assess the seismic strength of the arched structures, three-dimensional analysis is

necessary.
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Figure 6. Seismic behavior, model B
4.4 Seismic behavior, model C

Since model C has fixed walls in the both sides, the out-of-plane deformation is very small and no
clear cracks can be seen. It survived the earthquake as shown in Fig. 7.
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Figure 7. Seismic behavior, model C

4.5 Seismic behavior, model D
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Figure 8. Seismic behavior, model D



Seismic behavior of model D is shown in Fig. 8. Since the wall has soil elements softer than the stone
elements, the out-of-plane deformation is larger than that for model B, which can be seen by
comparing the pictures of 4.8 sec in Figs. 6 and 8. Moreover, the stone elements and the soil elements
show individual out-of-plane behavior as can be seen after 5.2 sec. The failure occurrence mechanism
of model D is the same as that of model B. The wall’s out-of-plane deformation with torsional
behavior generated the cracks. No elements fell from the arched ring and only elements from the
backfill fell down.

4.6 Seismic behavior, case E
Seismic behavior of model E is shown in Fig. 9. Though the model has the fixed elements in the both

sides, the out-of-plane deformation is larger than that of model C due to the soft soil in the backfill.
Therefore, the cracks are generated as can be seen at the picture of 4.8 sec.
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Figure 9. Seismic behavior, model E
4.7 Seismic behavior, case F

Seismic behavior of model F is shown in Fig. 10.

Model F has the fixed elements in the both sides as similar to model C, but has longer bridge length.
The out-of-plane deformation in the middle span is larger than that of model C, so the cracks are
generated in this part at 4.8 sec. The cracks proceed after 7.0 sec, and several stone elements between
two arched rings fell down. From these findings, it can be expected that multi-span bridges have larger
out-of-plane deformation, causing more cracks in the parts between arched rings.
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Figure 10. Seismic behavior, model F
4.8 Vertical displacement history of top of the arched ring

Vertical displacement histories of the gravity center of the element which is on the top of the arched
ring are compared in Fig. 11.

From Fig. 11.(a), it is found that the element from model A fell down, and it started falling at about
3.5 sec when the acceleration history of the input ground motion takes large values.



As for models C, E and F with fixed elements in the both sides (Fig. 11.(c)(e)(f)), the vertical
displacement histories have similar shapes. They have two peaks at about 3.8 sec and 4.8 sec. These
two peaks come from the peaks of the input ground motions in NS (y) direction (Fig. 3. (b)).

As for models B and D with no fixed elements in the sides (Fig. 11.(b)(d)), the vertical displacement
histories have also similar shapes. They have three peaks at about 3.8, 4.3 and 4.8 sec. The peaks at
4.3 sec come from the peak ground acceleration in EW (x) direction (Fig. 3.(a)). Since models B and
D have no constraints in x direction and can deform in its direction, the effect of the input ground
motion in EW(x) direction can be seen.
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Figure 11. Displacement histories of elements on top of the arch ring in z direction

4.9 Effect of reinforcement by inserting mortar

Next, the effect of reinforcement by mortar is investigated. All models are reinforced by inserting
mortar between stones. The tension and bonding strengths between stones originally in contact are set
to be f; = ¢ =2.0x10° N/m’. No reinforcement is made to soils in the backfill.

Fig. 12. indicates the reinforced models after the earthquake excitation. Reinforcement to stone walls
of model D failed in resisting earthquake excitation because unreinforced soil elements moved and
pushed the stone walls outward. Apart from model D, no elements fell down and the effect of the
reinforcement is confirmed.
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Figure 12. Models with mortar reinforcement



5. CONCLUSION

Seismic behaviors of the stone arched bridges are analyzed by the 3-dimensional DEM. The structural
models are created based on the existing stone arched bridge in Kagoshima, Japan, whose geometry
and material properties can be found in the literature. Several models are created, a single arched ring
model, an arched model with backfill made of stones, an arched model with backfill made of stones
and soil, two-span arched bridges with backfill made of stones, etc. The earthquake ground motions
observed during the 1995 Hyogo-ken Nanbu earthquake are used.

Firstly, by inputting impulse wave, the first natural frequencies in three directions are computed, and
their vibration characteristics are investigated. It is found that the dominant mode of the single arched
ring model is an inner-plane deformation, and that the dominant mode of arched bridges with the
backfill is the out-of-plane deformation. Secondly, seismic behaviors are computed and the failure
mechanism is investigated. It is found that the single arched ring model is very vulnerable and
collapsed by the earthquake. For other models with the backfill, the arched ring part did not collapse
even tough cracks occurred. The cracks occurred mainly by the out-of-plane deformation of the
bridges with torsional behavior. The elements from the backfill fell down for the models without fixed
elements in the sides and for the models with two-span due to their deformability in the out-of-plane
direction.

All models except the single arched ring model avoided collapsing, and it is found that the analyzed
stone arched bridges with backfill have the seismic resistance. However, as the number of spans
increases or if the boundary condition is free in the side, or if soils are packed inside the bridges, there
is a possibility that some stones fall down because the out-of-plane deformation increases. Therefore,
to assess the seismic performance, appropriate modeling of the boundary conditions in the sides and
the material properties in the backfill is found to be important. Seismic behaviors of reinforced models
by inserting mortar between stones are also computed and the effectiveness is confirmed.
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