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of ET accelerograms, that is created in such a way that the response spectrum at t=10 sec is 
equivalent to the ASCE-41 design spectrum for Tehran, IRAN (Mirzaee and Estekanchi, 2011), is 
used as the basic accelerogram in this study. 

2. BASIC CONCEPTS OF ENDURANCE TIME ANALYSIS 

The Endurance Time (ET) method is a time-history based analysis and design procedure. In this 
method the structure is subjected to a standard calibrated intensifying accelerogram and the time that 
it experiences a specified level of damage is considered as the seismic resistance criteria for that 
structure. Therefore, the seismic performance of the buildings can be compared directly with the time 
that they can endure the intensifying accelerogram. Higher endurance time is to be interpreted as a 
more reasonable performance (Estekanchi et al., 2011).  

 

One of the parameters in the production of the ET accelerograms is the profile of the changes in the 
amplitude of the acceleration with time. All the ET accelerograms that have been produced so far 
have a linear intensification scheme. These accelerograms are created so that at a predefined time, 
tTarget, the response spectrum reaches a pre-specified template response spectrum. For example, three 
accelerograms, named “ETA20jn01-03”, are created in such a way that the response spectrum at t=10 
sec is compatible with the ASCE-41 design spectrum for Tehran (Mirzaee and Estekanchi, 2011). In 
the accelerograms with linear intensification scheme, the response spectrum of an ET accelerogram is 
to intensify proportionally with time. Consequently, the target acceleration response of an ET 
accelerogram is defined as in Eqn. 2.1. 

 

etT
aCaT t

t
TStTS

arg

)(),( ×≡
 

 
                                       (2.1) 

 

where SaT(T,t) is the target acceleration response at time t, T is the period of free vibration and SaC(T) 
is the codified design acceleration spectrum (Estekanchi et al., 2007). It should be considered that 
these simplifications are just being made in order to synthesize a preliminary ET acceleration function 
(Estekanchi et al., 2011). The results of the endurance time method are usually interpreted by a curve 
called “ET Response Curve” or “ET Performance Curve”.  Figure 1 shows the ET response curves for 
three sample steel moment frames. 

 
Figure 1. ET performance curves for three steel moment frames. 
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3. APPLICATION OF ET METHOD IN PERFORMANCE-BASED DESIGN 

Application of the ET method in performance-based design was studied for the first time by Mirzaee 
et al. (2010). They proposed using a curve called the “Target Curve” to facilitate the evaluation of 
seismic performance of the structures using ET method. This curve expresses the limit of the proper 
seismic performance of a structure (acceptance criteria) along various times in ET analysis (note that 
times in ET analysis can be interpreted as seismic intensities). By comparing the ET performance 
curve with the target curve, the seismic performance of the structure at different seismic intensities 
can be evaluated. They also introduced an index called “Damage Level” or briefly “DL” to simplify 
the comparison between various parameters that are used for evaluating the seismic performance of 
the frames. The formulation proposed for the DL has been arranged is such a way as to assign an 
explicit number (preferably an integer) to each performance level and use the determining parameters 
(such as interstory drift and plastic rotation) to compute the DL in a clear and understandable way. 

This formula is as follows: 
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where θ is the related parameter-like drift, which should be computed from analysis and θi is the 
ASCE-41(ASCE, 2007) boundary of that parameter for each performance level. In Fig. 2 the 
performance curves for drift and plastic rotation of beams in a steel frame are depicted and compared 
to the target curve using DL index. 

 

 

Figure 2. An example of target and performance curves (Mirzaee et al., 2010). 
 

4. CORRELATIING TIME IN ET ANALYSIS WITH SEISMIC HAZARD RETURN 
PERIOD  

Both the performance and target curves in ET analysis represent the changes in the seismic 
performance of the structures with intensity, which is increased with the time. One way to improve 
the usefulness of these curves is to substitute equivalent return period for time (Bazmuneh 2009). The 
present study sought to address this issue by examining the correlation between time in ET analysis 
and the return period of ground motion. The return period is defined as the average period of time, in 
years, between the expected occurrences of an earthquake of specified severity.   

The ETA20jn series of ET accelerogram is used as the basic accelerogram in this investigation. It is 
noticeable that for present ET accelerograms, this correlation depends on the fundamental period of 
the structure. In other words, different structures with different fundamental periods will have 
different ET analysis times, relevant to a particular return period.  
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Since there is no direct relationship between time in ET method and return period, the response 
spectrum has been utilized as an intermittent criterion. The time at which the response spectrum is 
matched to the response spectrum corresponding to a particular hazard level (or return period) is 
traced. This procedure has been accomplished considering a range of periods (from 0.2 seconds to 1.5 
seconds). In this research the ASCE Standard for Seismic Rehabilitation of Existing Buildings, 
known as ASCE-41 (ASCE, 2007) is considered and used to obtain the response spectrum for the 
desired site (Tehran, Iran) and different hazard levels.. It should be noted here that the site is 
classified as site class C with Vs30≈600 m/s and is generally similar to Los Angeles area. 

To acquire the design response spectrum for different hazard levels, an appropriate approach is to 
identify the relation between the basic parameters of design response spectrum (Ss, short-period 
spectral response acceleration parameter and S1, long-period spectral response acceleration 
parameter) and the return period (or identically annual probability of exceedance). In this regard, the 
seismic hazard curves for SS and S1 obtained by Mirzaee and Estekanchi (Mirzaee and Estekanchi, 
2011) are used to develop a formulation for Sa (spectral acceleration) versus return period.   

 

 

Figure 3. Seismic hazard curve for Sa (Mirzaee and Estekanchi, 2011). 
 

In Figure 3, the seismic hazard curves for SS and S1, for Tehran, are shown. According to this figure, 
the relation between SS and S1 and the annual probability of exceedance (λm) can be derived as in 
Eqns. 4.1 and 4.2. 
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Considering that the annual probability of exceedance is equal to the inverse of the return period 
(Kramer, 1996), the ASCE-41 response spectrum can be introduced, according to the value of the 
return period, as indicated in Eqn. 4.3. 
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(4.3) 
 

Where Sa is the spectral acceleration, T is the period of free vibration, R is the return period and TS 

and T0 are equal to 
90.712.2

17.6
43.0

44.0

−
−

R

R   and 0.2TS respectively. 

 

The return period can be expressed as a function of T and Sa developing the inverse of function f(R, 
T) given in Eqn. 4.3, with respect to variable R, (Eqn. 4.4). 

 

),(),( TSfTShR a
R

a
−==  (4.4) 

 

where R is the return period, h(Sa , T) is a function that relates the return period to Sa and T, and Rf −  
represents the inverse of function f (given in Eqn. 4.3), with respect to variable R. On the other hand, 
the response spectrum for the ET accelerogram is defined, as indicated in Eqn. 4.5 (Estekanchi et al., 
2004): 

 

|))(max(|),( τatTSa =  ],0[ t∈τ  (4.5) 

   

where T is the period of free vibration, t is time, and a is acceleration. Eqns. 4.4 and 4.5 illustrate that 
Sa is dependent on T and t. and the return period can be developed as a function of T and Sa. The 
consequence is that the return period can be expressed as a function of T and t, accordingly. Since 
expressing the return period via an explicit formulation is a complex process, this function is 
represented by a matrix called ARP, as shown in Eqn. 4.6. To develop the matrix ARP, the value of Sa is 
calculated for the intended T and t using Eqn. 4.5 (or Eqn. 2.1). Then, the desired return period can be 
calculated utilizing Eqn. 4.4 regarding the values of intended T and obtained Sa.  
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Figure 6. EDP’s and final performance curves vs. target curve for SF1.  

 

 
Figure 7. Target and performance curves for SF1 by return period. 

 

The seismic performance of other frames has also been evaluated using similar performance and 
target curves. Fig. 8 shows the performance curves of SF1 and SF2 frames (steel frames without and 
with panel zone). As can be seen in this figure, the seismic performance of the SF2 frame is worse 
than the SF1 frame almost at all return periods.  

The seismic performance of two RC frames (RCF1 and RCF2, reinforced concrete frames without 
and with panel zone) can be studied by viewing Fig. 9. Similar to Fig. 8 this figure shows that 
considering the panel zone in the modeling of the frame aggravates the seismic performance of the 
frame.  

 

 

 
Figure 8. Target and performance curves for SF1 and SF2. 
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Figure 9. Target and performance curves for RCF1 and RCF2. 

 
The authors believe that this new presentation of ET analysis results is more suitable for practical 
applications by the structural designer. The target curve represents which EDP levels are to be 
considered as acceptable by performance criteria. While resultant EDP need to be compared to 
allowable ones only at specific points marked as IO, LS and CP considering code requirements; a 
continues target performance curve conveys a better image of a desirable performance objective in 
general. Also note that the comparison of relative performance of two different designs becomes 
much more intuitive using such diagrams. 

6. SUMMARY AND CONCLUSION 

The correlation between time as an indicator of intensity in ET analysis, and the return period as a 
function of fundamental structural periods, is investigated. The proposed procedure is based on the 
coincidence of response spectra obtained from ET accelerograms at different times and response 
spectra defined by ASCE-41 at different hazard levels.  

Results of the study suggest the following conclusions: 1. Substitution of the return period for time in the target and ET performance curves increases the 
readability of these curves and can considerably improve the presentation of ET analysis results 
in performance-based design.  2. The effect of the fundamental period of the structure on the relation between time in ET analysis 
and the return period is strongly dependent on the compatibility of ET accelerogram template 
spectrum with design spectra at various intensity levels. Ideally, if an ET accelerogram is 
generated in such a way that its response spectra coincide with design seismic hazard response 
spectra, then the equivalent return period will only become a function of time, instead of a 
function of time and fundamental period. 3. Generating an ET accelerogram in such a way that its response spectrum for a number of ET 
analysis times becomes compatible with the design response spectra of several significant hazard 
levels would improve the versatility of such accelerograms in seismic assessment of structures. 4. For structural periods greater than 0.5 sec, the maximum return period that could be covered was 
less than 1500 years. Hence, ET accelerograms with longer durations or higher intensities should 
be generated to cover entire return periods of interest. The accelerograms with duration of 40 
seconds seem to be appropriate for this purpose. 
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