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SUMMARY: 

This paper presents a study on the structural behaviour of laminated glass panels with point-fixed façade system 

(spider glass) submitted to seismic action so that it aims to a better understanding of this fixing system 

behaviour. A study was conducted on a set of laminated glass panels used on an office building in Lisbon. A 

simplified method was used to obtain the maximum induced force on the façade panels. Subsequently several 

series of numeric tests were conducted using the accelerations records on a real and artificial earthquake. Time 

history analyses were preformed to assess the existence of resonant effects on the panel due to the building’s 

natural frequency and the sensitivity to damping. 
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1. INTRODUCTION 
 

Glass is a material that has been used in construction industry for centuries mainly for the production 

of windows, but recent developments in science and technology meant that nowadays glass is used in 

structural demanding applications like façades, girders and columns. 

 

Due to its characteristics glazing façade solutions aims to gather building’s envelope in such way that 

it has become one of the defining features of the twentieth and twenty first century architecture. 

Modern glazed façade curtain wall systems include either singular aluminium alloy frame glass curtain 

walls or frameless glass curtain walls. 

 

During an earthquake, due to both in-plane and out of plane loads, glass breakage and fallout poses 

serious hazard to pedestrians and occupants with considerable economic losses. For example Sucuoǧlu 

and Vallabhan (1997) refer broken windows as the second most serious non-structural damage related 

with earthquakes.  

 

Although there is some research on the behaviour of glass panels under out-of-plane loads, e.g., wind 

loads, the combine effect of both in-plane and out-of plane loads that are applied to the panels during 

an earthquake seems to be a not very well studied subject.In fact, seismic action brings out specific 

problems not only to designers but to practitioners as well, mainly, due to the lack of, at least well-

known, international rules or regulations about this issue. Design codes tend to limit out-of-plane 

damage by specifying a seismic static load while damage due to in-plane vibration is controlled by 

imposing interstorey drift limits to buildings (Sucuoǧlu & Vallabhan 1997). The scope of this paper is 

to present the relevant aspects of the seismic loading in point fixed glass panels. Firstly a simplified 

method based upon the elastic response spectrum is introduced, then the results of time history 

dynamic analyses are presented.  

 

 

2. STATE OF ART 

 

2.1 A review on the structural behaviour of glass and design of glazed structures 
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Figure 2.1. Point fixed glazed façade system: 
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Point fixed glazed façade system: Left) example of a point fixed façade; Right) example of a bolt 

used to perform the panel's support (Martins 2011) 
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method to determine the final solution, however the designer should be aware the stress distribution is 

heavily influenced by the modelling solution adopted for the boundary conditions (Martins 2011). In 

the development of the glass façade the engineer must take in to account some details like the gap 

between the bolt and the panel, the distance between the hole and the panel’s edge and glass’ 

thickness, because this factors are known to heavily influence the panel’s structural behaviour 

(Haldimann et al. 2008). 

 

2.3 Seismic design of glazed façades 
 

Severe earthquake causes damage to both structural and non-structural elements such as window glass 

and curtain walls. Besides the fact that damage suffered by curtain wall façades is very costly, falling 

façade fragments during an earthquake poses a serious hazard to both pedestrians and people 

attempting to leave the building.  

 

Very little research has been produced on the seismic performance of glass panels, being one of the 

firsts due to Bouwkamp (1961); in which the author analysed the behaviour of windows panels under 

static in-plane loading. Thirty years later King and Lim (1991), as cited by Sucuoǧlu and Vallabhan 

(1997), also published the results of an experimental study on the in-plane behaviour of curtain wall 

glazing systems with similar conclusions to those of Bouwkamp. More recently, Memari et al (2004, 

2003) also conducted studies on the seismic behaviour of glazed façade panels. 

 

During an earthquake two types of lateral loads are considered acting in the façade panels: the “in 

plane” loads and the “out of plane” loads. In-plane actions causes, mainly shear stresses, while the 

others excite the panel in bending. The frequency content of the dynamic loads transmitted to the 

panels is modulated by the building natural frequency, so if it happens that it has a value very close to 

the panel’s natural frequency, resonant effects occur with an agonisingly increase of the dynamic 

response, a well-known phenomena that must be avoided, otherwise structural safety may be 

compromised. 

 

For out-of-plane loads some simplified methods to assess the seismic behaviour of glazed façade 

panels are available and will be properly reviewed further in this paper (Camposinhos 2009; Singh et 

al. 2006, 2006), however the same is not true for in-plane loading. As there are no design regulations 

for determine seismic behaviour under in-plane loads, some laboratory test procedures according to 

the American Architectural Manufacturers Association recommendations (AAMA 2009, 2009) are 

followed in order to evaluate the maximum seismic drift which may cause glass breakage and fallout 

of framed glass panels. The dynamic test procedure considers a sinusoidal drift history with growing 

amplitudes up to a maximum of 150 millimetres (Figure 2.2). This test method has been applied in 

previous studies, like Memari et al (2003, 2004), and is going to be used to assess the seismic 

behaviour of point fixed glass panels in the Seismic Laboratory of the University of Porto Engineering 

faculty 

 

 
 

Figure 2.2. Displacement time history for dynamic crescendo test (AAMA 2009) 

 



 

3. SIMPLIFIED METHOD TO ASSESS SEISMIC LOADS 

 

In the work of Camposinhos (2009) a simplified method to assess the seismic forces, adapted from the 

studies of Singh et al (2006, 2006), is presented. The seismic force, calculated thought Eqn. 3.1, 

depends on the building’s natural vibration period, the panel’s mass and natural vibration period and 

the spectral acceleration evaluated according to Eurocode 8 (CEN 2010) rules.  
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Where: 

FEk characteristic seismic force; 

CfZ seismic coefficient of the panel 

SDS ground acceleration value; 

γE importance coefficients of the panel (ranging between 1.0 and 1.5); 

ME panel’s mass; 

RE coefficient of performance of the panel (ranging between 1.5 and 3.5). 

 

The output of Eqn 3.1 is directly related with Cfz which depends on many other parameters like the 

building’s natural vibration frequency and height, the panel’s dynamic properties and the floor in 

which it is located. The individual contribution of each one of these parameters was studied by 

Martins (2011) in which the author concluded that the positioning of the panel in building plays a 

major role in the variation of Cfz and consequently in the maximum seismic force. The elastic response 

spectrum used in this study is shown in Figure 3.1. The response spectrum was computed in order to 

get the maximum spectrum acceleration expected for the Portuguese territory, so was assumed an 

seismic action type II, soil type D and the Portuguese seismic zone 2.1 (CEN 2010).  

 

 
 

Figure 3.1. Design response spectrum (CEN 2010) 

 

Prior to the application of the simplified method a parametric analysis was made to evaluate the most 

severe design hypothesis from the seismic action point of view. To evaluate the variation of the 

parameter Cfz two different cases were studied: in the first the panel is assumed to be in the last floor 

(m=N), and in the second, the panel was assumed to be at the penultimate floor (m=N-1). The results 

(Figure 3.2) show a significant decay in the parameter Cfz when the panel is assumed to be in the 

penultimate floor with peak values being about 30% lower. Since the seismic load is directly 

correlated with this parameter the same behaviour is expected, so in the design stage special attention 

should be devoted to the panel placed in the last floor, thus it is in the significantly severe situation. In 

the plots is visible that the maximum values are reached for natural vibration periods of the building 

close the panel’s own natural vibration period, this behaviour derives from the fact that the dynamic 

load transmitted to the panel has its frequency content modulated by the building’s natural frequency. 
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Figure3.2. Variation of C

 

 

4. CASE STUDY 

 

4.1. General description of the test specimens
 

A set of five point supported laminated glass panels 

newly built office building in Lisbon. 

on the glass thicknesses, the interlayer and distance from edges to holes

 

Figure 4.1. Geometrical configuration of the glass panels: 

 

Panels identified as V1, V2, V3 and V4 

thick interlayer together with 8mm tempered glass

tempered glass sheets. Panels V1 and V3 have a SentryGlass

PVB interlayer. Furthermore an aditional

SentryGlass® as an interlayer was considered in the analyses. The 

modulus ranges from 3.2 MPa to 18 MPa 

this type of interlayer film three different values for 

(i) 3.2MPa, (ii) 9.0 MPa and (iii) 18.0 MPa. In the case of SentryGlas

adopted for its Young modulus, as suggested by Delincé

relevant data for the studied glass panels.
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Variation of Cfz: Left) m=N; Right) m=N-1. 

4.1. General description of the test specimens 

of five point supported laminated glass panels specimens were used to gather the behaviour of a 

 All the specimens have a surface of 2350x2300 mm

on the glass thicknesses, the interlayer and distance from edges to holes (Figure 4.1). 

 

Geometrical configuration of the glass panels: Left) V1 and V2; Right) V3, V4 and V5.

anels identified as V1, V2, V3 and V4 were obtained from 10mm strengthened glass and a 1.52mm 

thick interlayer together with 8mm tempered glass as well. Panel V5 is made with

tempered glass sheets. Panels V1 and V3 have a SentryGlass® film while the remaining panels have 

aditional panel with the same geometrical configuration 

was considered in the analyses. The literature states that PVB’s Young 

om 3.2 MPa to 18 MPa (Chen et al. 2010; Delincé et al. 2008), so in the panels with 

three different values for the interlayer Young Modulus were considered: 

(i) 3.2MPa, (ii) 9.0 MPa and (iii) 18.0 MPa. In the case of SentryGlas® a the value of 300 MPa was 

adopted for its Young modulus, as suggested by Delincé et al (2008).Table 4.1 summarises the 

relevant data for the studied glass panels. 
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Table 4.1. Test specimen’s description. 

Glass panel Dimensions [mm] Total thickness [mm]

V1 2350x2300 10+1.52+8

V2(i) 2350x2300 10+1.52+8

V2(ii) 2350x2300 10+1.52+8

V2(iii) 2350x2300 10+1.52+8

V3 2350x2300 10+1.52+8

V4(i) 2350x2300 10+1.52+8

V4(ii) 2350x2300 10+1.52+8

V4(iii) 2350x2300 10+1.52+8

V5(i) 2350x2300 12+1.52+12

V5(ii) 2350x2300 12+1.52+12

V5(iii) 2350x2300 12+1.52+12

V5(iv) 2350x2300 12+1.52+12

 

4.2 FEM Model 
 

To evaluate the structural response of the glass panels a set of numerical models were made using 

commercial finite element (FE) software. The glass panels and interlayer film were 

node 3D finite elements. In the interior of the panel the maximum size of the finite elements was 

limited to 2 centimetres, while near the supports the maximum size was reduced to half to attend the 

stress concentrations near the holes to take in a

regions (Figure 4.2). 

 

Figure 4.2. FE mesh details -

 

The degrees of freedom (DOF) restrictions which enabled this stress concentration near

region and the brittle nature glass leads to a several numerical model simulations stages until a 

solution that that correctly represent the real support condition was achieved.

of the model two premises were advanced: 

real behaviour; (ii) Stress distribution around the hole should be compatible with reality. The best 

solution lead to the implementation of an external node where the support constraints 

The connection to the panel was provided 

 

4.3 Results 

 

4.3.1 Simplified method 

 

Total thickness [mm] Interlayer  Interlayer’s Young modulus [MPa]

10+1.52+8 SentryGlas® 300 

10+1.52+8 PVB 3.2 

10+1.52+8 PVB 9.0 

10+1.52+8 PVB 18.0 
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10+1.52+8 PVB 9.0 

10+1.52+8 PVB 18.0 

12+1.52+12 PVB 3.2 

12+1.52+12 PVB 9.0 

12+1.52+12 PVB 18.0 

12+1.52+12 SentryGlas® 300 

To evaluate the structural response of the glass panels a set of numerical models were made using 

commercial finite element (FE) software. The glass panels and interlayer film were modelled

node 3D finite elements. In the interior of the panel the maximum size of the finite elements was 

, while near the supports the maximum size was reduced to half to attend the 

stress concentrations near the holes to take in account the expected stress concentrations in these 

 

 

- a) lateral view; b) interior of the panel; c) support region.

reedom (DOF) restrictions which enabled this stress concentration near

region and the brittle nature glass leads to a several numerical model simulations stages until a 

solution that that correctly represent the real support condition was achieved. To assess the behaviour 

of the model two premises were advanced: (i) the allowance for rotations of the panel according the 

real behaviour; (ii) Stress distribution around the hole should be compatible with reality. The best 

solution lead to the implementation of an external node where the support constraints were appli

The connection to the panel was provided by means of rigid beam elements (Figure 4.2). 

Interlayer’s Young modulus [MPa] 

To evaluate the structural response of the glass panels a set of numerical models were made using 

modelled with 8-

node 3D finite elements. In the interior of the panel the maximum size of the finite elements was 

, while near the supports the maximum size was reduced to half to attend the 

ccount the expected stress concentrations in these 

; b) interior of the panel; c) support region. 

reedom (DOF) restrictions which enabled this stress concentration near the support 

region and the brittle nature glass leads to a several numerical model simulations stages until a 

To assess the behaviour 

(i) the allowance for rotations of the panel according the 

real behaviour; (ii) Stress distribution around the hole should be compatible with reality. The best 

were applied. 

 



After determining the panels natural period of vibration with the FEM models, the already mentioned 

simplified method was applied to assess the maximum seismic effect on the façade panel. Figure 4.3 

relates the expected seismic forces with the building’s natural period of vibration.  

 

 
 

Figure 4.3. Maximum seismic force transmitted to the panels 

 

As it can be observed in Figure 4.3, the maximum values for the seismic forces are all in the order of 

the tens of kilonewton (nearly 10 times the panel’s self weight). These high values lead to the 

formulation of the hypothesis of being related with resonant effects in the panels due to the frequency 

content of the dynamic load transmitted to them. 

 

4.3.2 Time history dynamic analyses 

 

In order to qualitatively assess the results obtained by the simplified method a set of time history 

dynamic analyses has been performed, using the El Centro earthquake ground motion record, properly 

scaled, and an artificial accelerograms matching the response spectrum in Figure 3.2. 

 

To verify the existence of resonant effects on the panels, a series of dynamic time history analyses 

were preformed on a simulated building structure carefully chosen so its natural frequency closely 

matches the one of panel V5(i). The structure’s response was later used as dynamic load acting on the 

panel. The choice for the panel V5(i) for the analysis was based on the fact that the maximum value 

for the seismic force predicted by the simplified method was calculated for this panel. The building’s 

acceleration and the panel’s response is presented in Figure 4.1.To compute the panel’s response 

damping effects in the panel were neglected because the simplified method just considers damping 

acting in the building structure. 

 

The calculated maximum acceleration response of the panel is greater or equal to ten times the floor 

maximum acceleration, which confirms the hypothesis of the existence of resonance in the façade 

panels. As expected the artificial accelerogram imposed to the panel a more severe load than the 

natural accelerogram, the maximum deflection calculated with this accelerogram more than doubles 

the one using the El Centro ground motion record. In the same conditions as settled in the simplified 

method the time history analyses using the artificial ground motion record lead to a similar maximum 

deflection (Table 4.1), which confirms the suitability of the simplified method to assess the maximum 

seismic forces acting on façade panel’s. 

 

Although the simplified method does not consider any damping acting on the panel, new dynamic time 

history analyses were preformed to assess the problem’s sensitivity to this parameter. Figure 4.5 

presents the panel’s dynamic response for different dynamic loads and damping coefficients. 

Comparing Figure 4.5 with Figure 4.5 is clear that damping has a profound effect on the panel’s 

dynamic response. In fact a damping coefficient of 2% leads to decay in the maximum deflection 

ranging from 30% to 50 %. So in buildings with natural vibration frequencies that might induce 

resonance in the façade panels an energy dissipation device should be applied to mitigate the effects of 

dynamic amplification. 
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Figure 4.4. Building’s acceleration and panels’s response 

 
Table 4.1. Comparison between simplified method and time history analyses. 

Calculated Maximum Panel Deflection [mm] 

Simplified Method El Centro Earthquake Artificial Accelerogram 

43.6 16.7 43.0 

 

  
 

Figure 4.5. Variation of panel’s response with dumping. 

 

4.3.3 Numerical simulation of the dynamic crescendo test  
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In section 2 was briefly described a test procedure to assess the maximum seismic drift causing glass 

breakage and fallout in framed glass panels. The test procedure, previously described in Section 2 was 

numerically simulated with the same FE models that were developed to determine the panel’s dynamic 

properties. In Figure 4.6 some results of the calculated maximum stress at different distances from the 

support region calculated for different drift levels are presented so that a comparison between the 

maximum stress and the allowable tensile stress was made possible. Thus it can be stated that rupture 

occurred for drift values less than10 mm.  

 

 
 

Figure 4.6. An example of the results obtained for the dynamic crescendo test. 

 

Taking as an example the drifts presented in Figure 4.7, calculated for the structure previously 

mentioned, is clear that the maximum drift that is possible to safely accommodate by the panels is 

insufficient to ensure safety. So is advisable the application of some special device, such the one 

proposed by Gowda and Heydari (2010), to ensure that the glass panels can cope with the drift 

demand. The low drift level that caused material failure determined by the numerical test lead to the 

formulation of the hypothesis that AAMA 501.6 dynamic test aims to determine the maximum drift 

that causes panel’s detachment from the support rather than the material rupture.  

 

  
 

Figure 4.7. Example of drift 

 

 

5. CONCLUSIONS 
 

In this paper was made clear the importance of an adequate modelling of the support conditions when 

using FEM to assess the structural behaviour of the panel. The simplified method to determine the 

seismic forces transmitted to façade panels seems to be able to capture the relevant aspects of the 
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whole issue regarding resonance effects as well. The numerical simulations using time history analysis 

confirmed the hypothesis of resonance effects induced by the building’s natural frequency and are in 

agreement with the peak values determined by the simplified method. Tests showed up that the 

problem’s sensibility to damping is relevant. In fact a 2% damping ratio for the panels lead to a 30% 

decrease in its maximum deflection. It must be emphasized that in earthquake prone regions façade 

panels without energy dissipation devices could be seriously and dangerously excited into non 

acceptable limits. 
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