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SUMMARY: 
The 2009 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and 
Other Structures redefined the design levels of ground motions as the spectral accelerations in the direction of 
maximum horizontal response. The 2009 Provision maps have been converted from the geometric mean maps 
assuming that the maximum direction to geometric mean ratio (MD/GMRotI50) depends only on the vibration 
period, and the standard deviation of maximum direction motions is the same as that of geometric mean motions. 
A detailed investigation of the MD/GMRotI50 ratio is essential to understanding the ground motion levels 
intended for seismic design. In this paper, we use records from strike-slip earthquakes to investigate the 
dependence of the logarithm of the ratio on magnitude, distance and rupture directivity and estimate its standard 
deviation using the Relevance Vector Machine regression. Our results suggest that different sets of variables 
govern the ratio for different vibration periods. 
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1. INTRODUCTION 
 
The 2009 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings 
and Other Structures redefined the design levels of ground motions as the spectral accelerations in the 
direction of maximum horizontal response. The Ground Motion Prediction Equations (GMPEs) 
developed in the Next Generation of Ground Motions (NGA) project used in the updated seismic 
design maps predict a rotated geometric mean called GMRotI50 (Boore et al., 2006), not the spectral 
acceleration in the direction of maximum response (MD). As opposed to GMRotI50, spectral 
maximum is not a geometric-mean measure. The 2009 Provision maps have been converted from the 
geometric mean maps by setting the maximum direction to geometric mean ratio (MD/GMRotI50) 
equal to 1.1 for short periods and 1.3 for mid-periods, based on the work of Huang et al. (2008). 
Implicit in this conversion are the following assumptions: (1) The maximum to geometric mean ratio 
depends only on the vibration period; (2) The standard deviation of maximum direction motions is the 
same as that of geometric mean motions. A detailed investigation of the MD/GMRotI50 ratio is 
essential to a better understanding of the ground motion levels intended for seismic design. 
 
In this study, we use 599 pairs of strike-slip records from the PEER-NGA database 
(http://peer.berkeley.edu/nga) to investigate the dependence of the maximum to geometric mean ratio 
on magnitude, distance and rupture directivity. Using different subsets of these three predictors as 
input, we perform Relevance Vector Machine (RVM) regression for the natural logarithm of the ratio 
for vibration periods between 0.05 second to 4 seconds. 
 
The remainder of the paper is organized as follows. Section 2 describes the maximum direction ground 
motions, and summarizes recent research findings regarding the variables affecting the MD/GMRotI50 
ratio. Section 3 describes the RVM regression model. After a brief introduction to the RVM, the input 
and output variables, and the ground motion data are described, and the RVM regression algorithm is 



outlined in this section. Section 4 presents the findings on the influence of different sets of predictors 
on the logarithmic ratio, and compares the predictions of the RVM model to those from two existing 
parametric models. Sections 5 concludes the paper by summarizing the findings. 
 
 
2. MAXIMUM DIRECTION MOTIONS  
 
The maximum direction motion at period T is defined as the maximum pseudo-acceleration of a single 
degree of freedom system with natural vibration period of T, taking into account all possible rotations 
in the horizontal plane. For a given acceleration record, the maximum direction motions can be 
computed by successively rotating the two orthogonal components through 90o in 1o increments, and 
extracting the maximum pseudo-acceleration for each period. The two components can also be 
combined into a single time series which will then be rotated through 180o (Boore, 2010). 
Alternatively, for each period, the pseudo-accelerations for the two components can be plotted, and the 
maximum spectral ordinate can be determined from the point furthest from the origin, as illustrated in 
Fig. 2.1. The figure shows the 5%-damped pseudo-accelerations for T=1.0 second, for the Pacoima 
Dam recording of the 1971 San Fernando Earthquake. For this record, the 1-second spectral ordinate 
in the direction of maximum response is 1.42g, which corresponds to a rotation angle of 31o.  
 

 
 

Figure 2.1. 5%-damped pseudo-accelerations and the spectral maximum for T=1.0 s, for the 1971 San Fernando 
earthquake recorded at Pacoima Dam station  

 
Several recent studies have focused on the relationship between the spectral maximum and the 
geometric mean. e.g., Beyer and Bommer (2006), Watson-Lamprey and Boore (2007), Campbell and 
Bozorgnia (2007), Huang et al. (2008). Beyer and Bommer (2006) used 949 records representing a 
wide range of magnitude, distance, fault mechanism and site class to investigate the relationship 
between different definitions of horizontal ground motions. They developed piecewise linear functions 
for the mean and the standard deviation of the natural logarithm of the maximum to geometric mean 
ratio as a function of period. Although they used as-recorded geometric mean, not the rotated 
geometric mean 50ܫݐܴܯܩ, the difference between the two is typically less than 3% (Boore et al., 
2006). In a similar study, Watson-Lamprey and Boore (2007) used 3397 records to develop conversion 
factors for the average and the standard deviation of the logarithm of spectral ordinates, for different 
definitions of horizontal ground motions.  Using least squares regression, they developed an equation 
for  ݈݊ ሺ50ܫݐܴܯܩ/ܦܯሻ as a function of magnitude, rupture distance and radiation pattern. They use 
the parameter cosሺ2ߠௌி௨௧ሻ to represent the radiation pattern for strike-slip faults, where ߠௌி௨௧ 
is the angle between the station and the fault strike, measured from the midpoint of the fault. Their 
results are in close agreement with those reported in Beyer and Bommer (2006). Huang et al. (2008) 
analyzed 147 pairs of near-fault records with rupture distance smaller than 15 km, and moment 



magnitude at least 6.5 to study the relationship between different definitions of horizontal spectra. 
They found that the median of the ratio of maximum direction to the average NGA-predicted 
GMRotI50 is dependent on period and the Somerville directivity parameters. 
 
 
3. THE RVM MODEL  
 
Introduced by Tipping (2000), the Relevance Vector Machine (RVM) is a supervised machine 
learning tool that overcomes several limitations of traditional approaches. By combining the 
computational advantage of the use of kernel functions with an efficient algorithm for maximizing the 
marginal likelihood function, the RVM constructs a nonparametric model capable of probabilistic 
predictions. The RVM treats the model coefficients and the standard deviation as individual random 
variables with different variances, and searches for the most likely model based on the observations 
While the RVM algorithm can be used in both regression and classification problems with some 
adjustments (Tipping and Faul, 2003), in this paper, we restrict our attention to the regression 
algorithm. 
 
The RVM adopts a very flexible model structure where the coefficients and the number of terms in the 
model are determined based on the observations. Using a fixed functional form can introduce bias into 
the predictions, making the model susceptible to over-fitting. In ground motion modeling, the lack of 
full understanding of earthquake processes makes it difficult to determine the proper form of the 
functional input-output relationship. While the lack of a sufficient number of records has so far 
prevented full exploitation of nonparametric modeling, this approach is expected to gain increasing 
attention with the continual growth in seismic databases.  
 
3.1. Input and Output Variables 
 
The output variable in the RVM model is the logarithmic ratio  ݈݊ ሺ50ܫݐܴܯܩ/ܦܯሻ for the following 
vibration periods: T=0.05 second, T= 0.1 second, T= 0.5 second, T=1.0 second, T=2 second, and T= 4 
second. 
 
We consider three predictors (moment magnitude, rupture distance and directivity), and define eight 
models each using a different variable subset. To represent rupture directivity, we use the Somerville 
parameter ܺܿߠݏ where ܺ is the  fraction of fault along strike that ruptures toward site, and ߠ is the 
azimuth angle between the fault plane and the ray path to the site (Somerville et al., 1997). The input 
variables used in the RVM models are listed in Table 3.1. A tick mark in the table indicates that the 
variable is included in the model. Model 1 does not use any predictors; it simply outputs the average 
logarithmic ratio for each period. This model serves as a baseline to measure the improvement 
achieved by using a predictive variable set, instead of simply using the average logarithmic ratio. 
 
Table 3.1. Input Variables used in the Models 
 Input  Variables  
Model Magnitude (M) Distance (Rrup) Directivity (ܺܿߠݏሻ 
RVM1 (Baseline)    
RVM2    
RVM3   
RVM4   
RVM5   
RVM6  
RVM7   
RVM8  
 
 
 
 



3.2. Ground Motion Records  
 
The ground motion records used in training the RVM models come from the PEER-NGA database 
(http://peer.berkeley.edu/nga). We use strike-slip records with rupture distance less than 200 km. The 
records with missing rupture distance or Somerville parameter were excluded. The magnitude and 
distance distribution of the 599 records is shown in Fig. 3.1. 
 

 
 

Figure 3.1. Magnitude and distance distribution of the selected records  
 
 
3.3. The RVM Regression Algorithm 
 
Given a set of N input-target pairs, where the ith pair is represented as ሺݔ,  ሻ, the RVM adopts theݐ
kernel representation (Smola and Schölkopf, 2004) to express the unknown functional relationship. 
The regression function is written as a linear combination of basis (kernel) functions: 
 

         ݂ሺݔሻ ൌ   ∑ ,ݔሺܭ  ݓ ሻݔ  ݓ
ே
ୀଵ          (3.1)

 
where ݓ,   ݅ ൌ 1 … ܰ   are  the model weights,  ݓ is a constant term,  and the ܭ is a kernel function. 
In this study, we use the radial basis function (RBF) as the kernel. The RBF is defined as 
 

,ݔ൫ܭ          ൯ݔ     ൌ ݁ିఊฮ௫ି௫ೕฮమ  , ߛ  0          (3.2)
 
where  ߛ is a parameter controlling the width of the kernel.  Assuming zero-mean Gaussian noise 
i.e.,  ݊~ࣨሺ0, ߪ

ଶሻ, the target value of the ith observation can be written as 
 

ݐ          ൌ ݂ሺݔሻ  ݊         ݅ ൌ 1, … , ܰ.          (3.3)
 
Equation (3.3) can be rewritten in matrix form as 
 

ݐ          ൌ Φw  ݊,              (3.4)
 
where Φ is the basis matrix of size ܰ ൈ ሺܰ  1ሻ where  ߔ ൌ ,ݔሺܭ ଵߔ ିଵሻ andݔ ൌ 1,                      
ݓ ൌ ሺݓ, … , ݐ  ேሻ், andݓ ൌ ሺݐଵ, … ,  ேሻ்.   Assuming independence of observations, the likelihoodݐ
function (the probability of observing the data given the model) can be written as:  
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where  ߤ ൌ ሺߤ, … ,  ேሻ்  is the vector containing the mean values of  the weights. Assigning aߤ
Gaussian prior with mean 0  and variance  1/ߙ  for   the ith component of  ݓ,  and assuming  
independence of the weights, the conditional probability of the weights given the inverse variances 
ߙ ൌ ሺߙ, … ,  ேሻ  can be written as (MacKay, 1992b)ߙ
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The posterior distribution of weight vector can be obtained as: 
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where  ߤ is the mean vector given by  
 

ߤ          ൌ ߪ
ିଶ(3.8)          ,ݐ்ߔ ܥ

 
and ܥ is the covariance matrix given by 
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The marginal likelihood is determined by integrating out the weights as follows: 
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where  ܪ ൌ ߪ

ଶܫே  ߪ  andߙ  ே is the identity matrix of size ܰ. The values ofܫ  and  ்ߔଵିܣߔ
ଶ 

maximizing Eqn. (3.10) can be found iteratively as follows (MacKay, 1992a): 
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Because the nominator in Eqn. (3.11) is a positive number with a maximum value of 1,  ߙ

  tending to 
infinity implies that ݓ ൌ 0.  As a consequence, the corresponding basis function (or, equivalently, the 
column in matrix Φ) can be removed from the model. The procedure for determining the weights and 
the noise variance can be summarized as follows: 

1) Form the basis matrix Φ. 
2) Initialize ߙ ൌ ሺߙ, … , ߪ  ேሻ  andߙ

ଶ. 
3) Compute the covariance matrix ܥ using Eqn. (3.9). 
4) Compute the mean vector ߤ using Eqn. (3.8). 
5) Update ߙ and ߪ

ଶ using Eqn. (3.11) and Eqn. (3.12). 
6) If  ߙ

 ՜ ∞, set ݓ ൌ 0 and remove the corresponding column in Φ.    
7) Go to Step 3 until convergence. 
8) Set the remaining weights equal to ߤ . 

 
The input vectors corresponding to the remaining nonzero weights are called the “relevance vectors”.  
After the weights and the noise variance are determined, the predictive mean for a new input כݔ can be 
found as follows: 



1) Using the relevance vectors ሺrଵ, rଶ … , rN୰ሻ, where form the basis matrix Φכ using  
 

         Φכ ൌ ሾ1  ܭሺxכ, rଵሻ   ܭሺxכ, rଶሻ … ,כሺxܭ rN୰ሻሿT   (3.13) 
 

2) Compute the expected value of the output using  
 

         ݂ሺכݔ ሻ ൌ  (3.14)          כΦ்ߤ
 
Total predictive variance (כߪ

ଶ) can be determined by adding the variance due to uncertainty in the 
weights ൫Φכ

TCΦכ൯ to the variance of the noise ሺߪ
ଶሻ.   

 
 
4. RESULTS  
 
4.1. Variable Selection  
 
The eight models listed in Table 3.1. have been trained, and five-fold cross validation errors have been 
computed. More details on training and cross validation can be found in e.g.  Tezcan and Piolatto 
(2012)  and  Tezcan and Cheng  (2012).  Table 4.1 lists the cross-validation root-mean-square errors 
(RMSE) corresponding to the six vibration periods. For each period, the lowest error has been marked 
using superscript **. 
 
Table 4.1. Cross validation root-mean-square errors (RMSE) 
  Cross validation RMSE 
Model Variables T=0.05 s. T=0.1 s. T=0.5 s. T=1 s. T=2 s. T=4 s. 
RVM1 (Baseline)  - 0.0757 0.0797 0.1010 0.1024 0.1104 0.1219 
RVM2 0.0725 ܯ 0.0763 0.0961 0.0996 0.1071 0.1174 
RVM3 ݈ܴ݊ 0.0700** 0.0745** 0.0946 0.0995 0.1097 0.1200 
RVM4 ܺܿ0.1139 0.1059 0.0989 0.0940 0.0772 0.0726 ߠݏ** 
RVM5 ܯ, ݈ܴ݊ 0.0723 0.0752 0.0939** 0.0989 0.1058 0.1191 
RVM6 ݈ܴ݊, 0.0718 ߠݏܿܺ 0.0763 0.0951 0.0993 0.1078 0.1176 
RVM7 ܯ,  0.1166 **0.1046 **0.0970 0.0958 0.0756 0.0722 ߠݏܿܺ
RVM8 ܯ, ݈ܴ݊,  0.1167 0.1056 0.0980 0.0946 0.0764 0.0722 ߠݏܿܺ
 
The RMSE values in the table show that while the baseline model (RVM1), which does not use any 
predictors, has the highest cross validation error for each period, the improvement achieved by 
introducing the predictors is not great. The listed RMSE values suggest that different sets of variables 
may govern the behavior of the maximum-to-geometric mean ratio for different periods. However, 
there is no indication of a strong relationship between ݈݊ ሺ50ܫݐܴܯܩ/ܦܯሻ and any of the variable 
sets listed. 
 
4.2. Comparisons with existing models  
 
In this section, we evaluate RVM5 model for two magnitudes (M=6 and M=7), and two distances 
(R=10 km and R=100 km),  and compare  its predictions to two existing models: the model by Beyer 
and Bommer (2006), and  the model by Watson-Lamprey and Boore (2007). These models will be 
referred to as BB06 and WLB07, respectively. The reason for selecting the RVM5 out of the eight 
RVM models is its similarity to the WLB07 model in terms of the predictors used. The WLB07 model 
uses  ܯ, ݈ܴ݊, and an optional radiation pattern term, while the BB06 model depends only on period.  
We evaluated the predictions of the WLB07 model without the radiation pattern term, making its 
predictor set identical to that of the RVM5 model.   
 
The median (50th percentile) and the 84th percentile values of the 50ܫݐܴܯܩ/ܦܯ ratios from the three 
models for M=6 and R=10 km are shown in Fig 4.1.  The M=6 and R=100 km case is shown in 
Fig.4.2.  The predictions for M=7 are shown in Fig.4.3. and Fig.4.4. for R= 10 km and R=100 km, 



respectively. The RVM5 predictions have not been smoothed.  
 
 

 
 

Figure 4.1. Predictions for the median and 84th percentile values of  50ܫݐܴܯܩ/ܦܯ  for M=6 and R=10 km  
 
 
 
 

 
 

Figure 4.2. Predictions for the median and 84th percentile values of  50ܫݐܴܯܩ/ܦܯ  for M=6 and R=100 km  
 
 
 
 
 



 
 

Figure 4.3. Predictions for the median and 84th percentile values of  50ܫݐܴܯܩ/ܦܯ  for M=7 and R=10 km  
 
 
 

 
 

Figure 4.4. Predictions for the median and 84th percentile values of  50ܫݐܴܯܩ/ܦܯ  for M=7 and R=100 km  
 
The logarithmic standard deviations from the three models are listed in Table 4.2. The values from the 
RVM5 model are approximately double the BB06 values, and very close to the WLB07 values. 
 
Table 4.2. Comparison of standard deviation of ݈݊ ሺ50ܫݐܴܯܩ/ܦܯሻ 

Period (sec) Standard deviation  
RVM5 WLB07 BB06 

0.05  0.076 0.093 0.040 
0.1 0.081 0.092 0.040 
0.5 0.099 0.107 0.054 
1.0 0.104 0.110 0.060 
2.0 0.111 0.111 0.060 
4.0 0.120 0.115 0.060 
 



5. CONCLUSION  
 
This paper uses Relevance Vector Machine (RVM) regression, a probabilistic sparse kernel model, to 
investigate the dependence of the maximum direction to geometric mean (MD/GMRotI50) ratio on 
magnitude, rupture distance, and directivity. Not requiring a fixed functional form makes RVM 
suitable for determining the influence of different subsets of predictors on the dependent variable 
being modeled. In addition, because RVM is a probabilistic model, the standard deviations are 
automatically computed using Bayesian inference, instead of being estimated from the fitting errors. 
 
Eight RVM models, each using a different subset of the three predictors (magnitude, rupture distance, 
and directivity) as the input and the logarithm of the (MD/GMRotI50) ratio as the output, have been 
trained using 599 pairs of horizontal acceleration records from strike-slip earthquakes, taken from the 
PEER database. Six vibration periods ranging from 0.05 second to 4 seconds were considered. The 
performance of each model was measured using five-fold cross validation errors.  
 
The results suggest that different subsets of the three predictors considered (magnitude, distance and 
directivity) may govern the maximum-to-geometric mean ratio for different periods. However, there is 
no indication of a strong relationship between  ݈݊ ሺ50ܫݐܴܯܩ/ܦܯሻ and any of the variable subsets.   
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