
Damage Detection Method by Using Inverse Solution of 
Equations of Motion in Frequency Domain 
 
 
 
M. Ghasemi & M. Ghafory-Ashtiany  
International Institute of Earthquake Engineering and Seismology, (IIEES), Tehran, Iran 
 

 
 
SUMMARY: 
This paper presents a new damage detection method using direct solution of the equations of motion in the 
frequency domain. The method utilizes directly the acceleration frequency response of the selected degree of 
freedoms, some natural frequency of the damaged structure and mode shapes of the undamaged analytical model 
of structure to identify the structural stiffness of the damaged structure including the damping ratio. The least 
square method is used to minimize the residual force in the frequency domain. The validity and efficiency of the 
proposed method is tested on a simple truss structure subjected to sweep harmonic forces. It is shown that the 
proposed method can estimate the structural member's stiffness with a high level of accuracy. In the case of 
white noise RMS of equal to 5% of the maximum RMS of the structure response, the stiffness of members can 
be identified with less than two percent error. 
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1. INTRODUCTION 
 
Vibration-based Structural health monitoring methods estimate the change in the modal or/and 
structural properties can detect the probable damage location and severity in order to identify 
structural integrity (Doebling and et al., 1996; Salawo, 1997; Yan, 2007; Antonino and Vestroni, 
2008; Sohn and et al., 2004). One of these methods which is “Model Updating” can be classified as: 
modal-based and response-based. The modal-based model updating techniques utilize the modal 
characteristics data extracted from the experimental modal analysis (Yuen, 1985; Stubbs and et al., 
1990; Hearn and Testa, 1991; Narkis, 1994; Amani and et al., 2007). Considering that: 1) The 
numerical identification of the modal parameters is accompanied by the imprecision that can exceed 
the level of required accuracy to update FE models (Sestieri and D’Ambrogio, 1985); 2) For structures 
with closely spaced modes, the identified modal properties will be associated with high levels errors; 
and 3) Some type of damage have low effect on the modal properties (Farrar et al., 1994); thus the 
modal-based-updating techniques cannot always result to reliable estimation of damage. 
 
In both time and frequency response-based updating methods, the measured data are directly utilized 
to identify some of the structural parameters. The identified parameters will then be used to update and 
improve the finite element model (FEM) of the structure. In this method the measured responses 
which reflect more data points and the structural properties can better update the structural model, in 
comparison with the modal-based where only few eigen-properties are identified. Recently some have 
used the combination of the aforementioned methods to cover the effect of the unmeasured data 
(Esfandiari and et al., 2009).  
 
In the response-based model updating methods, frequency domain and FRF-based methods have been 
more widely developed and applied due to the ease of handling data and separating the intense noise in 
the frequency domain. These model updating techniques are used to minimize a residual error between 
analytical and experimental input force/output response (Natke, 1988; Fritzen, 1992; D’Ambrogio and 



et al., 1993; Friswell and Mottershead, 1995; Pothisiri and Hjelmstad, 2003). One of the restrictions of 
the FRF model updating techniques is the incompatibility between the degrees of freedom (DOF) of 
the FEM and the tested structure due to the incomplete measurements and data acquisition problems, 
such as limitation of the sensors and installation point. In this case, the objective function of the input-
residuals or output-residuals cannot be assembled and minimized. Many researchers have utilized the 
reduction of DOF of the FEM (Conti and Donley 1992) or expansion of the measurement vector 
(Esfandiari and et al., 2009; 2010) in order to become compatible with the analytical and tested 
structure. Both techniques convert a linear model updating problem (full measurement) to a nonlinear 
problem due to matrix inversion containing unknown parameters. The nonlinear problem can be 
solved by the nonlinear optimization procedures or by the iterative linear solving techniques. The 
frequency range of the FRF data and weighting techniques of the equation are considered in the FRF 
based the research (Wang and et al., 1997; Park and Park, 2003). 
 
In this paper, a frequency domain finite element model updating algorithm has been presented to 
identify the damage location and severity. The system property matrices of the damaged structure are 
correlated to the input force and responses of the damaged structure in the frequency domain. The 
damage reduction factors of the elements are obtained using least square minimization of the residual 
errors of the equations of the motions in the frequency domain. ‘‘Damage” can be defined as an actual 
damage, deterioration, or errors in initial section stiffness property. Here, it is assumed that damage is 
uniformly distributed along the element and it is modeled as stiffness reduction factor for the element.  
So the identified stiffness reduction factor will be an equivalent reduction factor for the partially 
distributed damage. The unmeasured responses of the damaged structure are estimated by the mode 
shapes of analytical FEM of the undamaged structure and the identified frequencies and damping loss 
factors of the damaged structure. The accuracy of the estimated responses will be improved during the 
iterative damage detection process. A simple truss structure with the noisy measured response is used 
to demonstrate the efficiency of finite element model updating and damage assessment. Figure1 shows 
the summary of the proposed algorithm for the assessment of the structural condition. 
 

 
 

Figure 1. Process of the proposed method of the structure assessment 
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2. PROPOSED DAMAGE DETCTION ALGORITHM 
 
In this study, it is assumed that the responses of the damaged structure are measured through the force 
vibration test and the undamaged structure is modelled using the finite element model regarding to the 
initial structural properties. In the proposed algorithm the modal properties of the undamaged structure 
are required to approximate the unmeasured response of the damaged structure. These modal 
properties can be calculated using the analytical model of the initial structure. 
 
The general equation of motion for viscously damped linear model of damaged structure with “n” 
number of degrees-of-freedom can be written as: 
 

ሷሺtሻܠ܌ۻ  ሶሺtሻܠ܌۱  ሺtሻܠ܌۹ ൌ  ሺtሻ (2.1)
 
where ܌۱ ,܌ۻ and ۹܌ are ݊ ൈ ݊ matrices of the mass, damping and stiffness of the damaged structure, 
respectively. ܠሷ ሶܠ , ݊ ሺtሻ are and ܠ , ൈ 1 vectors of the acceleration, velocity, displacement and input 
force, respectively. This equation for “m” time step of input and responses can be written as: 
 

ሷ܆୬ൈ୬ۻ ୬ൈ୫  ۱୬ൈ୬܆ሶ ୬ൈ୫  ۹୬ൈ୬܆୬ൈ୫ ൌ ۴୬ൈ୫ (2.2) 
 
Assuming the acceleration and input force vectors as: 
 

 ۴ሺtሻ ൌ ۴ሺωሻe୨ன୲    and    ܆ሷ ሺtሻ ൌ ሷ܆ ሺωሻe୨ன୲     (2.3) 
 
where ۴ሺωሻ and ܆ሷ ሺωሻ are the input force and acceleration of the damaged structure in the frequency 
domain. ω is the frequency of the excitation input force and j ൌ √െ1. The velocity and displacement 
frequency response can be estimated as: 
 

ሶ܆ ሺωሻ ൌ ሷ܆ ሺωሻ ωj⁄      and      ܆ሺωሻ ൌ ሷ܆ ሺωሻ ሺെωଶሻ⁄  (2.4) 
 
When the frequency response of acceleration is accompanied by measurement noise, the Eqn. 2.4 can 
amplify or reduce the noise effect in the velocity and displacement frequency response regarding to 
the frequency domain. The equation of motion in Eq. 2.1 for the damaged structure in the frequency 
domain can be written as: 
 

ሷ܆܌ۻ ሺωሻ  ሶ܆܌۱ ሺωሻ  ሺωሻ܆܌۹ ൌ ۴ሺωሻ (2.5) 
 
Considering that in most of the structures, the damage will not result to any changes in the structural 
mass and it can be assumed that ܌ۻ ൌ  .ۻ
 
Eventhough, the damping of the damaged structure which is related to the material properties, 
structural geometry, structural connections, non-structural elements, etc. are not modelled in the 
analytical model of the structure; here only the linear viscous damping matrix of the damaged 
structure, Cd, has been assumed as a function of the modal properties: 
 

܌۱ ൌ ܌
ି

ۏ
ێ
ێ
ۍ
cୢଵ 0 0 0
0 cୢଶ 0 0
0 0 ڰ 0
0 0 0 cୢ୬ے

ۑ
ۑ
ې

(2.6) ܌ 

 
where ܌ (݊ ൈ ݊) is mode shape and cୢ୧ is ith modal damping of the damaged structure defined as: 
 

cୢ୧ ൌ 2mୢ୧ξୢ୧ωୢ୧ (2.7) 
 



in which ωୢ୧ and ξୢ୧ are the frequencies and damping ratio of the ith mode of the damaged structure. 
The ith modal mass, mୢ୧, of the damaged structure can be written as:  
 

mୢ୧ ൌ Ԅୢ୧
܌ۻԄୢ୧ ൌ Ԅୢ୧

ۻԄୢ୧ (2.8) 
 
where Ԅୢ୧ is ݊ ൈ 1 the ith mode shape of the damaged structure.  
 
In the case of the incomplete measurement, only frequencies and damping ratios of the lower modes 
(ni modes) of the damaged structure can be accurately identified using common system identification 
methods. The other modal properties of the damaged structure in Eqns. 2.6 to 2.8 can be initially 
estimated to be equal to the modal properties of the analytical model of the undamaged structure. 
Then, these modal properties and the damping matrix will be updated during the iterative model 
updating procedure and consequently, their precision will be improved. Moreover, the influences of 
the damping of the structure on the frequency responses rapidly reduce by moving away from the 
resonance frequencies.  
 
Since measurement of response of structure in all DOF’s is not practical; only few Xሷ ன are measured 
and the unmeasured Xሷ ன can be estimated as: 
 

Xሷ ன ൌ െωଶ ൭ థథ


൫னౚିனమାଶ୨కனౚன൯

୬

୧ୀଵ

൱ Fன (2.9) 

 
Substituting the unknown modal properties of the damaged structure with the updating modal 
properties (modal properties of the analytical model of the undamaged structure in the beginning of 
iteration procedure), the Equation (2.9) can be rewritten as: 
 

Xሷ ன ؆ െωଶ ൭ థഥథഥ 


ഥ ൫னౚିனమାଶ୨కனౚன൯

୬

୧ୀଵ

  థഥథഥ 


ഥ ൫னഥ ିனమାଶ୨కതனഥ ன൯

୬

୧ୀ୬ାଵ

൱ Fன (2.10) 

 
where ωഥ ୧, ߦҧ , ߶ത and ഥ݉  represent the unknown natural frequencies, damping ratios, mode shapes and 
modal mass's of the ith mode of the damage structure which replaced by the modal properties of the 
analytical model of the undamaged structure. It should be noted that the modal parameters of the 
analytical model in Eqn. 2.10 are used as the starting point; and they will be updated during the 
optimization process. It should also be noted that the accuracy of the estimated Xሷ ன at nearby the 
natural frequencies of the structure is more than other frequency points. 
 
Using the simulated parameters from Eqns. 2.10, 2.6 and 2.4; the global stiffness matrix of damaged 
structure from Eqn. 2.5 can be updated as: 
 

܆܌۹ ൌ ۴ െ ሷ܆ۻ  െ ۱ത܆܌ሶ  (2.11) 
 
where ۱ത܌ is the approximate value of damping matrix of the damaged structure using the incomplete 
modal parameters; and the global stiffness of the structure can be written as: 
 

܌۹ ൌ  ܑ܂
܌۹܂

܍
ܑ܂ܑ

୬

୧ୀଵ
 (2.12) 

 
In which nୣ is the number of element of the structure, ܂ is element geometry transformation matrix, 
and ۹܌

܍
ܑ is the local stiffness matrix of ith element. The change in the stiffness matrix due to damage 

can be written as: 
 



઼۹ ൌ ۹ െ ܌۹ ൌ  ܑ܂
ሺ۹ܑ܂

܍ െ ܌۹
܍

ܑሻܑ܂

୬

୧ୀଵ
ൌ  ܑ܂

ሺ઼۹ܑ܂
ܑ܂ሻ܍

୬

୧ୀଵ
 (2.13) 

 
where ઼۹ܑ

 :is the reduction in the local stiffness matrix of the ith element, which can be expressed as ܍
 

઼۹ܑ
܍ ൌ β୧۹ܑ

 (2.14) ܍
 
where β୧ , the stiffness reduction factor, represents the relative changes in the stiffness matrix of the ith 
element in the damaged state with respect to the undamaged state. Thus, the change in the stiffness 
matrix can be expressed as the sum of changes in the element stiffness matrix. For frame elements, 
Eqn. 2.14 can be decomposed to separately update various structural parameters (e.g., EA, EI, GJ, 
etc.). Substituting Eqns. 2.13 and 2.12 into the Eqn. 2.11, it becomes: 
 

൫ ሺ1 െ β୧ሻ۹ܑ
୬܍

୧ୀଵ ൯܆ ൌ ۴ െ ሷ܆܌ۻ  െ ۱ത܆܌ሶ  (2.15) 
 
Stiffness reduction factor for each structural element can be obtained using Eqn. 2.15 by several 
optimization methods such as: the least square method (LS), singular value decomposition method 
(SVD), and non-negative least square method (NNLS). The process of the updating method is an 
iterative procedure which the accuracy of model parameters and the unknown simulated parameters 
will be improved in each iteration. The updating process will be converged if the maximum changes of 
the stiffness reduction factor in the successive iterations (j and j-1) will be less than proper criteria (ε) 
as following: 
 

maxሺ∆β୧ሻ ൌ maxሺβ୧
୨ െ β୧

୨ିଵሻ  ε (2.16) 
 
The accuracy of predicted damage depends on the several factors such as: the sensor types and 
locations, excitation types and locations, the quality of measured data (measurement error), selected 
frequency points for model updating, accuracy of the mathematical model (modeling error), 
observability of the unknown parameters, weighting techniques applied to the system of equations, 
and numerical methods used for solution of the system of equations. A balanced attention to these 
factors is expected to lead to less estimation errors in finite element model updating. 
 
 
3. NUMERICAL EXAMPLE 
 
The proposed procedure has been tested on several structural models. Here, the result for a high 
frequency system such as the two-dimensional truss shown in Fig. 3.1 is presented to demonstrate the 
robustness of the proposed updating method. The methods work much better for the low frequency 
system such as frame structure. The axial rigidity of elements, EA, (cross-sectional area of elements 
multiplied by Young’s modulus) has been updated through the model updating procedure.  

 

 
 

Figure 3.1. Property, geometry, and the location of actuator and sensor of the truss model. 
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The acceleration responses at the selected DOF's of the example truss can be measured from a force 
vibration experimental test; or mathematical simulation of a test. Here, for the simulation, harmonic 
sweep input forces are applied horizontally at the node 4 and the acceleration responses at the sensor 
locations were obtained (see Fig. 3.1 for the sensor and actuator placements). Considering that 
measured responses are noisy, 5% normal distributed random white noise has been added to the input 
forces and calculated responses. The level of the noise is defined as the root mean square (RMS) of 
noise with respect to of the RMS of the structure response and input forces. 
 
Three damage cases are considered to investigate robustness of the proposed parameter estimation 
method in locating and quantifying damage (see Table 3.1). Moreover, the natural frequencies of the 
undamaged and damaged structures are presented in Table 3.2. It has been assumed that the first three 
natural frequencies and damping ratios of the damage structures can be identified exactly. This 
assumption is not unrealistic due to recently developed system identification methods. 
 
Table 3.1. Damage scenarios and percent of damage (stiffness reduction) of elements. 

Case  Element numbers and their damage percentage 

1 Element no. 
Damage  

1 
50%   

2 Element no. 
Damage  

1 
50% 

4 
40%  

3 Element no. 
Damage  

1 
50% 

4 
40% 

5 
30% 

 
Table 3.2 Frequencies of undamaged and damaged trusses. 

Mode No. Undamaged Case 1 Case 2 Case 3 

1 161.7 152.8 147.4 137.9 

2 369.3 304.7 302.1 301.8 

3 398.8 397.0 330.5 318.9 

4 439.5 419.8 415.9 414.3 

5 559.2 557.6 557.0 551.9 
 
Using the proper excitation frequency and the selecting of the frequency response points can improve 
the reliability and accuracy of the results. Some general rules are proposed in the past researches 
(Pereira and et al., 1995; Ren and De Roeck, 2001; Pascuala and et al., 2007); such as: 1) The 
frequency of excitation shall not be selected too close to the natural frequencies of the structure in 
order to see the effect of all structural modes and not get dominated by a specific or single mode of the 
structure; and 2) The higher frequency excitations will lead to the more accurate results, since in most 
cases the higher modes are more sensitive to the damage occurrence. Considering that the selection of 
the excitation frequency can be accompanied by the severe changes in the results; here instead of 
commonly used harmonic input, the sweeping harmonic load with frequency of 100 to 600 Hz is used 
to excite the all modes of the structure. The frequency domain of the input force can affect the 
efficiency and accuracy of the proposed method. It has been seen that the accuracy of the results 
decreases when a narrow band frequency loading is used.  
 
Selection the proper and enough frequency points in the model updating procedure using the Eqn. 2.15 
is important to achieve the accurate results. These frequency points should be selected such that: 1) to 
eliminate the noisy data in the measurements and simulated data, and 2) to properly select the part of 
data that are more influenced by the structural damage. In this process following points should be 
considered: 



1. The anti-resonance points should be excluded due to highly relative measurement noise in 
measured DOF's; and being insensitive to the structural damage.  

2. The first portion of the velocity and displacement frequency response is eliminated due to 
amplification of the noise in the acceleration response, see Eqn. 2.4. 

3. The frequency points very close to natural frequencies must be excluded. The reasons are: a)  
The precision of the approximated damping matrix using the Eqn. 2.6 with substituted 
undamaged modal properties will decrease in frequency points very close to the natural 
frequency; and b) Eventhough the accuracy of the simulated ܆ሷ  using the Eqn. 2.10 in the 
vicinity of the natural frequencies is more than the anti-resonance ranges, a little imprecision 
in the identification of the natural frequencies of the damage structure will shift the ܆ሷ  and 
results to large difference between the simulated and exact in the frequency point very close to 
the natural frequencies. In this study the exact frequencies of the damage structure have been 
used.  

Based on the abovementioned points, the frequency ranges as shown in the Table 3.3 are selected for 
the model updating process. Moreover, it can be recommended to select the frequency point at the 
regions in which the occurred damage caused more changes in the natural frequencies, since the 
change in the frequency responses will be more noticeable in these regions. 
 
Table 3.3 Selected frequency ranges for model updating. 
Damage case  Case 1  Case 2  Case 3  

Frequency range 
(Hz.)  

160-170  160-170  150-160  

310-330  270-290  270-290  
 
Using the selected frequency ranges at 1 Hz interval, the model has been updated according to the 
flowchart shown in Fig. 2.1; and results are presented in the Fig. 3.2. Black bars indicate location and 
severity of the damaged truss member defined in terms of stiffness reduction factor (β), and the white 
bars indicate the predicted results. The maximum error in the estimated stiffness reduction factor is 
less than 5% for the all damage cases. Moreover, Fig. 3.3 shows the convergences of the iterative 
process. It can be seen the calculations are converged through the 20 iterations. The error of predicted 
stiffness reduction factor (β) calculated based on the differences of the actual and predicted stiffness 
reduction factor. The model updating procedure is performed using the 100 data sets for three damage 
cases and COV of the results are calculated. The low level of the COV has been seen in the all cases 
which show the high level of reliability of the results. 
 
The accuracy improvement of the simulated displacement frequency response (܆) of the second 
DOF’s during the updating model has been shown in Fig. 3.4. The scaled error of simulated ܆ before 
and after updating the model are compared. The error are scaled to the maximum of ܆. It can be seen 
that the error of the simulated ܆ decreases to the less 1% as through the model updating.  

 

 
 

Figure 3.2. Actual and predicted damage (stiffness reduction factors) for the different damage cases. 
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Figure 3.3. Accuracy improvement of the predicted damage (stiffness reduction factors) during the iterative 
model updating. 

 

 
 

Figure 3.4. Comparison of the relative error of simulated displacement frequency response (܆) before and after 
the updating model. 

 
 
4. CONCLUSIONS 
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domain. It is assumed that the acceleration responses of the damaged structure can be measured at the 
selected DOF’s and some of the frequencies and damping ratios of the damaged structure can be 
identified using the available SI methods. Assuming the viscous linear damping, the damping matrix 
and unmeasured acceleration response of the damaged structure has been written based on its modal 
properties. The unknown modal properties of the damaged structure have been initially substituted 
with modal properties of the analytical model in the first step of model updating procedure. The model 
parameters and the unknown simulated response of the damaged structure have been updated using an 
iterative procedure. In each iteration, the velocity and displacement frequency responses are estimated 
using the measured and simulated acceleration responses and the model parameters are calculated 
using least square method. The results of the model updating method have been presented for a two-
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dimensional truss to show the robustness of the method. The sensitivity of the method to the frequency 
range of the input force is discussed. The sweeping harmonic input is employed to overcome the high 
sensitivity of the input force to the frequency range in the practical cases. The appropriate criteria for 
the selection of the frequency point for the model updating procedure are explained. Three damage 
cases have been presented and it has been shown that the proposed method can predict all damage 
(stiffness reduction factor) locations and severities accurately. It has been shown that the maximum 
error of predicted stiffness reduction factor is less than five percent of the initial stiffness. Also, it is 
shown that the iterative model updating process has been converged in the maximum 20 iterations for 
all damage cases. One of the advantages of the present method is that the COV the predicted 
parameters are very low. The error of the simulated responses at the unmeasured DOF’s are presented 
and it has been shown that their accuracy will improve during the model updating process. 
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