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SUMMARY:  

This paper proposes an analytical model and formulation for predicting the seismic response of isolated bridges 

with abutment transverse restraint. These are a particular class of multi-span continuous bridges in which 

isolation bearings are provided only between the piers top and the deck whereas seismic stoppers restrain the 

transverse motion of the deck at the abutments. 

The bridges are modelled by two-dimensional simply supported beams with intermediate visco-elastic restraints, 

whose properties are calibrated to describe the substructures behaviour. First, the application of the complex 

mode superposition method to the specific class of bridges analyzed is illustrated, with the aim of deriving an 

exact benchmark solution to the seismic problem. Then, two simplified models useful for preliminary analysis 

and design are proposed.  

The reliability of the simplified models is assessed by comparing the approximate results of the seismic analysis 

of realistic PRSI bridges with the refined results involving the use of the complex mode superposition method. 
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1. INTRODUCTION  

Partially restrained seismically isolated bridges (PRSI) are a particular class of isolated bridges in 

which isolation bearings are posed only at the top of the piers, with seismic stoppers restraining the 

transverse motion of the superstructure at the abutments. The growing interest on the dynamic 

behaviour of this class of bridges is demonstrated by numerous recent experimental (Boroschek et al. 

2003, Shen et al. 2004) and numerical (Tsai 2008, Makris et al. 2009, Tubaldi and Dall’Asta 2011a, 

Tubaldi et al. 2011b, Tubaldi et al. 2011c, Tubaldi and Dall’Asta 2012) studies. 

An analytical model commonly employed for the analysis of the transverse behaviour of PRSI bridges 

consists in a continuous 2-dimensional simply supported beams resting on discrete intermediate 

supports (usually with visco-elastic behaviour) representing the pier-bearing systems. The damping is 

promoted by two different mechanisms: the isolated piers, characterized by high dissipation capacity 

localized in the bearings, and the deck, characterized by a lower but widespread dissipation capacity. 

The drastical variation of energy dissipation among the isolated structure results in non-classical 

damping and this makes the seismic analysis complicated to be carried out in rigorous terms. In 

general, the exact solution for the seismic problem of a non-classically damped system requires 

resorting to the direct integration of the equations of motion or to complex modal analysis (Veletsos 

and Ventura 1986), due to the presence of non-classic complex vibration modes. While the first 

approach is conceptually simple (though computationally expansive when complex and/or large-scale 

system are analyzed), the second approach is difficult to implement and in general not attractive for 

practical engineering use. For this reason, many studies have been devoted to the definition of 

approximate techniques of analysis and to the assessment of their accuracy (Claret and Venancio-Filho 

1991, Kim 1995, Venancio-Filho et al. 2001, Morzfeld et al. 2008). With reference to fully isolated 

bridges, the studies of Hwang et al. (1997), Franchin et al. (2001), Lee et al. (2011) have shown that 

the decoupling approximation considering the real undamped modes and the diagonal terms of the 

modal damping matrix usually provides a fully acceptable estimate of the seismic response. However, 



the effects of this decoupling approximation on the evaluation of the seismic response of PRSI bridges 

have not been investigated, yet. This issue becomes of particular relevance in consequence of the 

numerous studies regarding the dynamic behaviour of PRSI bridges that completely disregard non-

classical damping (Tsai 2008, Tubaldi and Dall’Asta 2011a, Makris et al. 2010). The work of Tubaldi 

and Dall’Asta (2012) addresses this issue within the context of the free-vibration response of PRSI 

bridges. The authors observe that non classical damping influences differently the various response 

parameters (i.e., the transverse displacement shape is less affected than the bending moment demand 

by the damping non proportionality). However, a closer examination is still required in order to ensure 

whether the use of proportionally damped models is adequate or not for the seismic assessment of 

these systems.  

Another approximation often introduced in the analysis of PRSI bridges is the assumption of a pre-

fixed sinusoidal vibration shape (Tsai 2008, Tubaldi and Dall’Asta 2011a, Tubaldi et al. 2011c). This 

assumption permits to derive analytically the properties of a generalized SDOF system equivalent to 

the bridge and to estimate the system response by expressing the seismic demand in terms of a 

response spectrum reduced to account for the system composite damping ratio. It is noteworthy that 

the vibration modes of a simply supported homogeneous beam are purely sinusoidal. The vibration 

shapes of a homogeneous beam resting on continuous homogeneous restraints are sinusoidal, too. 

Thus, also the PRSI bridge is expected to exhibit a sinusoidal transverse deformed shape if the 

following conditions are met: a) the superstructure stiffness is significantly higher than the pier 

stiffness, b) the variations of mass and stiffness of the deck and of the supports are not significant, c) 

the span number is high, and d) the displacement field is dominated by the first vibration mode. Again, 

further investigations are required to estimate the error committed by the simplified analysis 

techniques involving this approximation in estimating the seismic response of real configurations of 

PRSI bridges. 

The aim of this study is to define an exact analytical technique for the seismic assessment of PRSI 

bridges, modelled as non-classically damped continuous systems, and to measure the error in the 

estimate of the response deriving by the introduction of the previously described approximations. In 

order to accomplish this, the complex mode superposition (CMS) method (Foss 1958, Veletsos and 

Ventura 1986, Oliveto et al. 1997, Gurgoze and Erol 2006) is specialized and applied to the particular 

structural system considered. The application of the CMS method permits to test the accuracy of two 

simplified alternative techniques of analysis proposed in this paper. The first one employs classic 

modes of vibration (corresponding to the vibration modes  obtained by neglecting the damping of the 

intermediate restraints) instead of the exact complex modes for describing the motion whereas the 

second technique employs the Fourier sine-only series terms (corresponding to the vibration modes 

obtained neglecting completely the intermediate restraints). The introduction of these approximations 

results in a coupling of the equation of motions projected in the space of the approximating functions 

which is neglected in the solution in order to simplify the response assessment. The extent of the 

coupling is quantified by means of two appropriately defined indexes. 

Finally, a realistic case study is analyzed and the seismic response according to the CMS method is 

compared with the response obtained applying the proposed simplified techniques, in order to test 

their accuracy and establish a relation between the coupling coefficients and the error committed due 

to the approximations introduced. 

2. DYNAMIC BEHAVIOR OF PRSI BRIDGES 

In order to keep the problem as simple as possible, the PRSI bridges are modelled (Figure 1) as 2-

dimensional beams resting on discrete visco-elastic supports representing the pier-bearing systems and 

pinned at the abutments. 
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Figure 1. Analytical 2-dimensional model for PRSI bridges. 



Let ( ) [ ] ( ) ( ){ }2 0, : 0 0V v x H L v v L= ∈ = =  be the space of displacement functions defined along the 

bridge length L and satisfying the kinematic (essential) boundary conditions, and 

( ) [ ]( )2

0 1; ; ,u x t U C V t t∈ =  be the motion, defined in the time interval considered [t0, t1] and known at 

the initial instant together with its time derivative (initial conditions). 

The differential dynamic problem can be derived from the D'Alembert principle (Truesdell and Toupin 

1960) and posed in the following form: 
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The functions m(x), b(x) and cd(x) are piecewise continuous and denote the mass per unit length, the 

transverse stiffness per unit length and the deck distributed damping constant. The constants kc,r and 

cc,r are the stiffness and damping constant of the visco-elastic support located at the r-th position x=xr 

while ( )gu tɺɺ  denotes the ground motion input. N denotes the total number of intermediate supports. 

In order to simplify the analytical solution of the problem, m(x), b(x) and cd(x) are assumed as constant 

and equal respectively to md, EId, cd. The local form of the problem is obtained by integrating by parts 

Eqn. (2.1) and can be formally written as: 
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where M, C, K denote respectively the mass, damping and stiffness operator. They are expressed as (δ 

is the Dirac’s delta function): 
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3. EIGENVALUE PROBLEM FOR PRSI BRIDGES 

The free vibrations problem of the beam is obtained by posing 0gu =ɺɺ  in Eqn.(2.2). The corresponding 

differential boundary problem is then reduced to an eigenvalue problem solvable by expressing the 

transverse displacement ( ),u x t  as the product of a spatial function ( )xψ  and a time-dependent 

function ( ) 0

tZ t Z eλ= : 

 ( ) ( ) ( ),u x t x Z tψ=  (3.1) 

After substituting Eqn.(3.1) into Eqn.(2.2) for 0gu =ɺɺ , the following transcendental equation is 

obtained: 
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Eqn.(3.2) is satisfied by an infinite number of eigenvalues and eigenvectors that occur in complex 



conjugate pairs (Prater and Sing 1990). The i-th eigenvalue iλ  contains information about the system 

vibration frequency and damping, while the i-th eigenvector ( )i xψ  is the i-th vibration shape. The 

solution of the eigenvalue problem is described in Tubaldi and Dall’Asta (2012). In the same paper, 

the following orthogonality conditions are also derived and reported: 
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4. SEISMIC RESPONSE OF PRSI BRIDGES 

4.1. CMS method for seismic response assessment 

In the complex modes superposition method, the displacement of the beam is expanded as the linear 

combination of the complex vibration modes as: 
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where ( )i xψ  = i-th complex modal shape, ( )iq t  = i-th complex generalized coordinate, and mN = 

total number of modes considered. 

For ( ) ( ) ,gu t tδ=ɺɺ  one obtains the expression of the complex modal impulse response function 

( ),c

ih x t  corresponding to the i-th mode (Oliveto et al. 1997). 
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The sum of the contribution to the complex modal impulse response function of the i-th mode and of 

its complex conjugate yields a real function ( ),ih x t , which may be expressed as (Oliveto et al. 1997) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), i it t

i i i i i i i i i ih x t B x e B x e x h t x h t
λ λψ ψ α λ β= + = + ɺ  (4.3) 

where ( ) ( ) ( )21i i i i ix x xα ξ β ξ γ= − − , ( ) [ ]2Rei i ix Bβ ψ= , ( ) [ ]2Imi i ix Bγ ψ= , and where ( )ih t  

denotes the impulse response function of a SDOF system with natural frequency 0i iω λ= , damping 

ratio ξi and damped frequency ωi, whose expression is: 
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In order to take advantage of the closed form expression of the impulse response function, the generic 

seismic input is expressed as a sum of Delta dirac functions as follows: 
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The seismic response in terms of transverse displacement is then expressed as:  
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where ( )iD t  and ( )iD tɺ  denote the response of the oscillator with natural frequency 0i iω λ= , 

damping ratio iξ  and damped frequency d iω , subjected to the seismic input ( )gu tɺɺ . 

In the case of , 0c rc = , one obtains 2

0 0 1i i i i iiλ ξ ω ω ξ= − + − , ( )0/ 2i m i dc mξ ω=  

( )2

0/ 2 1i i i iB iρ ω ξ= − − , 0/i i iα ρ ω= , 0iβ = , ( )2

0/ 1i i i iγ ρ ω ξ= − − , where iρ = i-th real mode 

participation factor. In the case of , 0c r dc c= = , one obtains 0i iiλ ω= , 0/ 2i i iB iρ ω= − , 0/i i iα ρ ω= , 

0iβ = , 0/i i iγ ρ ω= − . Thus, in both cases, Eqn.(4.6) reduces to the well known expression: 
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Other quantities that are of interest for describing the seismic response of PRSI bridges are the 

abutment reactions ( ) ( )0,ab dR t EI u t′′′= −  and the transverse bending moments 

( ) ( ), ,dM x t EI u x t′′= − , which depend respectively on the second ( ),u x t′′  and third order derivatives 

( ),u x t′′′  of the transverse displacement. The computation of these quantities involves calculating the 

spatial derivatives of the modal shapes, which are exactly known.  

4.2. Simplified methods for seismic response assessment  

The assessment of the exact seismic response of the system entails performing a cumbersome 

numerical procedure for solving the transcendental equation corresponding to the eigenvalue problem. 

In this paragraph, two simplified approaches are investigated in order to avoid this complexity and 

reduce the computational cost of the seismic analysis. These approaches are based on the assumed 

modes method (Hamdan and Jubran 1991, Hassanpour 2010) and entail using approximate functions 

( )iy x  instead of the exact complex vibration modes ( )i xψ  for describing the displacement field.  

In the first method, referred to as real modes superposition (RMS) method, the motion is expanded as 

the linear combination of the real modes of vibration ( )iy x = ( )i xφ  of the undamped (or classically 

damped) structure. The calculation of the classic modes ( )i xφ  involves solving an eigenvalue problem 

less computationally demanding than that required for computing ( )i xψ , and can be easily performed 

within any finite element program.  

In the second method, referred to as Fourier terms superposition (FTS) method, the Fourier sine-only 

series terms ( )iy x = ( )i xϕ  are employed. In this case, the use of the terms ( )i xϕ  does not involve 

solving any eigenvalue problem and permits deriving an analytical solution to the dynamic problem at 

a very reduced computational cost, without recourse to FE analysis.  

It is noteworthy that he orthogonality conditions for the terms ( )i xφ  and ( )i xϕ  can be derived from 

Eqs.(3.3) and (3.4) by posing respectively ,c rc = 0 and ,c rc = ,c rk =0, for  r = 1,2,…,N. By using the 

approximate functions ( )i xφ  and ( )i xϕ  instead of the exact complex vibration modes ( )i xψ  for 

describing the displacement field, a system of coupled Galerkin equations is obtained in the form 

(Hamdan and Jubran 1991, Hassanpour 2010): 



 ( ) ( ) ( ) ( ) ( ) ( )d c d c gt t t u t+ + −Mq + C C q + K K q = MIɺ ɺɺ  (4.8) 

where M  is the mass matrix, d c+C C  and d c+K K are respectively the damping and stiffness matrix 

accounting for the contribution of both the deck and the intermediate supports, and ( )tq  is the vector 

containing the generalized coordinates. The expressions for the matrices are: 
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and depend on the mode shape functions ( )iy x  employed.  

It is noteworthy that these matrices are in general non diagonal. A common approximation introduced 

for practical purposes (Prater and Singh, 1986, Claret and Venancio-Filho 1991) is to disregard the 

off-diagonal terms of the coupled matrixes to obtain a set of uncoupled equations. The resulting i-th 

equation describes the motion of a SDOF system with mass [ ]
ii

M , stiffness [ ] [ ]( )d cii ii
+K K  and 

damping constant [ ] [ ]( )d cii ii
+C C . Thus, traditional analysis tools available for the seismic analysis of 

SDOF systems can be employed to compute efficiently the generalized displacements ( )iq t  and the 

response ( ),u x t , under the given ground motion excitation. 

4.2.1. RMS method for seismic response assessment 

This method corresponds to expressing the displacement ( ),u x t  in Eqn.(4.1) in terms of the real 

modes of vibration ( )i xφ , for i=1,2,…,Nm. This approximation leads, upon application of the 

orthogonality conditions, to a set of coupled Galerkin equations due to the non-zero value terms of 

matrix cC  for i j≠ . It is generally accepted that if these off-diagonal terms are small compared to the 

diagonal terms, the errors induced by disregarding them in the response assessment are small (Prater 

and Singh, 1986, Claret and Venancio-Filho 1991). In order to evaluate to what extent the modal 

damping matrix is coupled, a coupling index is defined (Claret and Venāncio-Filho 1991) as 

1. . max ijc i α= , where: 
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The index assumes high values for intermediate supports with high dissipation capacity, while it 

assumes lower and lower values for increasing number of supports with homogeneous properties, 

since the behaviour tends to that of a beam on continuous visco-elastic restraints, for which 0ijα = . 

4.2.2. FTS method  

This method corresponds to expressing the displacement ( ),u x t  in terms of the Fourier sine-only 

series terms ( ) ( )sin /i ix x Lϕ π= . The application of the orthogonality conditions leads to a set of 

coupled Galerkin equations due to the non-zero value terms of matrixes cC  and cK , for i j≠ . The 



terms of these equations have already been reported in Tubaldi and Dall’Asta (2011a) and have very 

simple closed-form expression. In order to evaluate to what extent the modal stiffness matrix is 

coupled, a second coupling index is defined, 2. . max ijc i β= , where: 
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It is noteworthy that 2. .c i  assumes high values in the case of intermediate supports with a relatively 

high stiffness compared to the deck stiffness. Conversely, it assumes lower and lower values for 

increasing number of spans and homogenous support properties, since the behaviour tends to that of a 

beam on continuous restraints. 

5. CASE STUDY 

The application of the exact CMS method and of the approximate RMS and FTS techniques for the 

seismic analysis of PRSI bridges is illustrated by considering a realistic bridge already studied in 

Tubaldi and Dall’Asta (2011a). This is a four-span continuous PRSI bridge with a steel-concrete 

superstructure and span lengths = 40m+60m+60m+40m. Although the thickness of the steel girders 

varies along the deck length, a constant value of the deck transverse stiffness EId = 1.1E+09 kNm
2
 is 

considered in order to simplify the problem, due to its negligible influence on the global dynamic 

response (Tubaldi and Dall’Asta 2012). The deck mass per unit length is equal to md  =  16.24ton/m. 

The circular frequency corresponding to the first mode of vibration of the superstructure vibrating 

alone with no intermediate supports is ωd = 2.03 rad/s. The deck damping constant cd is such that the 

first mode damping factor of the deck vibrating alone with no intermediate supports is equal to ξd = 

0.02. The central support has kc,2 = 2057.61 kN/m and cc,2 = 206.33 kN/m, while the outer supports 

have kc1 = kc3 = 3500.62 kN/m and cc,1 = cc,3 = 322.69 kN/m. It is recalled that these Kelvin models 

describe the stiffness and dissipation capacity of both the piers and the isolator.  

The properties of the first 5 vibration modes are reported in Table 1. The eigenvalues of the system 

have been determined by using the command fsolve in Matlab (Mathworks 2011) to solve the 

eigenvalue problem corresponding to Eqn. (3.2). It is noteworthy that even modes of vibration are 

characterized by an anti-symmetric shape and a participating factor equal to zero, and thus they do not 

affect the seismic response of the considered configurations. 

Table 5.1. Modal properties. 

Mode λi [-] ω0i [rad/s] ξi [-] 

1 -0.1723-2.6165i 2.62 0.0657 

2 -0.2196-8.3574i 8.36 0.0263 

3 -0.2834-18.4170i 18.42 0.0154 

4 -0.1097-32.5180i 32.52 0.0034 

5 -0.1042-50.7860i 50.79 0.0021 

 

In general, the effect of the intermediate restraints on the dynamic behaviour of the PRSI bridge is to 

increase the vibration frequency and the damping factor. The fundamental vibration frequency shifts 

from ωd = 2.03 rad/s to ω0i = 2.62 rad/s, corresponding to a first mode vibration period of about 2.4s. 

The first mode damping factor increases from ξd = 0.02 to ξ1 = 0.0657, whereas the damping factor of 

the internal and external supports for a harmonic motion at the same circular frequency are 

respectively 0.13 and 0.12. This is a result of the low dissipation capacity of the deck and of the dual 

load path behaviour of the bridge (Tubaldi et al. 2011b, Tubaldi et al. 2012). The composite damping 

ratio is in general very low and tends to decrease significantly with the increasing mode order.  



Figure 2 shows the response of the midspan transverse displacement (Figure 2a) and of the abutment 

reactions (Figure 2b), for a unit impulse load acting at the supports. The analytical exact expression of 

the i-th mode displacement impulse response is reported in Eqn.(4.3). The different response functions 

plotted in Figure 2 are obtained considering 1) the contribution of the first mode only, 2) the 

contribution of the first and third mode, and 3) the contribution of the first, third and fifth mode. It is 

noteworthy that the even modes of vibration are characterized by an anti-symmetric shape and a 

participating factor equal to zero, and thus they do not affect the seismic response of the 

configurations considered (uniform support excitation is assumed). Modes higher than the 5th also 

have a negligible influence on the response. 
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Figure 2. Response to impulsive loading in terms of a) midspan transverse displacement and b) abutment 

reactions. 

It is observed that the midspan displacement response is dominated by the first mode only while 

higher modes strongly affect the abutment reactions. The impulse response in terms of transverse 

bending moments, not reported due to space constraint, is also influenced by the higher modes 

contribution, but at a less extent than the abutment reactions. Based on this results, it is expected that 

the approximations introduced in the response assessment will also affect differently the various 

response parameter considered.  

The CMS method and the simplified RMS and FTS techniques are applied to the seismic analysis of 

the bridge under a set of 7 real ground motion records. These records are compatible with the 

Eurocode 8-1 (ECS 2005) design spectrum (Figure 3), corresponding to a site with a peak ground 

acceleration (PGA) of 0.35Sg where S is the soil factor, assumed equal to 1.15 (ground type C), and g 

is the gravity acceleration. They have been selected from the European strong motion Database 

(Ambraseys et al. 2000) and fulfil the requirements of Eurocode 8 (ECS 2005). For each record, the 

maximum values of the response parameter of interest attained during the seismic action are evaluated 

and averaged. These parameters are the midspan transverse displacement, the transverse bending 

moments and the abutment shear. Only the contribution of the first three anti-symmetric vibration 

modes are considered due to the negligible influence of the other modes. 
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Figure 3. Input response spectrum and response spectra of natural records vs period T. 

The average of the envelopes of the transverse displacements and bending moments according to the 



three analysis techniques are reported in Figure 4. The three analysis techniques provide practically 

the same transverse displacement envelope, which perfectly coincides with a sinusoidal shape. This 

result was expected, since vibration modes higher than the first have a negligible influence on the 

displacements, as already pointed out in Figure 2. 

With reference to the transverse bending moments envelope, the shape according to RMS and FTS 

agree well with the exact shape, the highest difference being in correspondence of the intermediate 

restraints. The influence of the third mode of vibration on the bending moments shape is well 

modelled by both the simplified techniques. 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0 50 100 150 200 

y [m] 

CMS 

RMS 

FTS 

u
m

a
x 

[m
] 

a) 

 

 b) 

0 50 100 150 200 

y [m] 
M

xm
a

x 
[k

N
m

] 

0 

2 

4 

6 

8 

10 

12 

14 x104 

CMS 

RMS 

FTS 

 

Figure 4. Transverse displacements and bending moments along the deck according to the exact and the 

simplified analysis techniques. 

The average of the maxima of the midspan displacement vmax, the transverse abutment reaction Rab,max 

and the midspan transverse bending moments Msag,max according to the three methods considered are 

shown and compared in Table 2. 

Table 5.2. Comparison of results according to various analysis techniques. 

Response parameter CMS RMS FMS 

vmax [m] 0.3543 0.3543 0.3537 

Rab,max [kN] 3051.5 3049.5 3090.9 

Msag,max [kNm] 126240 126230 126780 

  

With reference to this application, it can be concluded that both the simplified analysis techniques 

provide very accurate estimates of the response despite their reduced computational cost, the highest 

relative error being less than 0.06% for RMS method and 1.4% for FTS method. 

The coupling index for the damping matrix is 1. .c i = 0.226 for the RMS method and 1. .c i =0.224 for the 

FTS method, whereas the coupling index for the stiffness matrix is 2. .c i =5.60e-4 for the FTS method 

( 2. .c i = 0 for the RMS method). However, if only modes 1 and 3 are considered due to their higher 

contribution to the response with respect to mode 5, the coupling indexes reduce to 1. .c i =0.0454 for 

the RMS method and 1. .c i =0.0461 and 2. .c i =0.00056 for FTS method. Thus, the extent of coupling in 

both the stiffness and damping terms is very limited and the approximate techniques are expected to 

provide accurate estimates of the seismic response. 

6. CONCLUSIONS AND FURTHER STUDIES  

The proposed simplified analysis techniques provide very accurate estimates of the seismic response 

of the realistic PRSI bridge considered in this paper, at a fraction of the computational cost and 

complexity required by the application of the CMS method.  

Further parametric studies are currently being carried out in order to investigate the accuracy of these 

techniques for an extended set of bridge configurations. The additional results of these studies will 

permit to explicit the relationship between the coupling coefficients and the error committed in 

estimating the response parameter of interest. 
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