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SUMMARY: 
Previous sever earthquakes have urged the necessity of seismic rehabilitation of existing structures. One 

rehabilitation method is to use only tension bracing systems for Moment Resistant Frames (MRFs). Wire ropes 

(cables), having high strength and stiffness, but low ductility, cannot be proper choice for X-braced type systems. 

Wire-rope bracing system with a central cylinder is a modern bracing system. As a couple of wire ropes are bundled 
with a cylindrical member at their intersection points, their bracing members are longer than the diagonal length of 

the frame. Despite low ductility of wire rope, the bracing system exhibits ductile behavior which can be used in 

strengthening steel and concrete MRFs. In this paper the ideal behavior of wire rope-soft cylinder bracing system and 

the effects of some important parameters have been studied theoretically. These parameters are dimensions and 

situation (horizontal or vertical) of cylinder. Optimal dimensions of cylinder have also been evaluated. 
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1. INTRODUCTION 

 
Structural damages occurred due to the large recent earthquakes have emphasized the rehabilitation 

necessity of existing structures to withstand seismic loads. The flexibility of Moment Resistant Frame 

(MRF) systems may result in large drift and structural and nonstructural damage requesting costly post-

earthquake retrofit. While MRF system has a large ductility capacity, MRF requires large columns for 
keeping its drifts in the allowable limit defined by seismic codes (Bruneau, Uang & Whittaker, 1998). 

 

Different rehabilitation methods are introduced so far by the researchers, some of whom have focused on 
the application of braces in retrofitting. Bracing system can increase the stiffness and strength of story; 

however, the compression member might be buckled during the earthquake. For solving this problem, 

Buckling Restrained Bracing (BRB) has been introduced and improved the seismic behavior significantly 
(Xie, 2005; Tamai & Takamatsu, 2005; Renzi et al. 2007). 

 

Wire rope bracing system with a central cylinder is a modern bracing system. In this system a couple of 

wire-ropes are bundled with a cylindrical member at their intersection point. Bracing members do not act 
for small and medium vibration amplitudes but they prevent large vibration amplitudes which cause large 

story drifts (Hou & Tagawa, 2009), shown in Fig. 1.1. 



 

 

 
 

Figure 1.1. Wire rope bracing system with central cylinder 

 
Story drift (δs) at which the bracing member starts acting is controlled by cylindrical member size and 

expressed as follows: 
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Where, hc is column length; lb is beam length; lp is length of cylindrical member; φp is inner diameter of 

cylindrical member; φb is wire rope diameter. Here, the ideal behavior of wire rope-cylinder bracing 

system is investigated. In this system the cylinder is sufficiently soft relative to wire rope members (such 
as plastic pipe). The effects of some important parameters, the dimension and situation (horizontal or 

vertical) of cylinder, are also studied theoretically.  

 

 

2. MOVEMENT AND DEFORMATION EQUATIONS FOR A SOFT CYLINDER 
 

Regarding very low stiffness and high ductility of very soft cylinder, in the range of δ≤δs (δs is the 
displacement at which one wire rope start working), the cylinder can be deformed so that no increase is 

seen in the wire ropes' lengths and their internal forces remain zero until one wire rope becomes straight.  

In this case, if the wire rope length is constant inside the cylinder remains, its external length is also 
constant for every δ less than δs. Regarding Fig. 2.1., the distances between the points E, F, G and H to A, 

B, C and D are fixed, respectively. The points E, F, G and H are on the circles with centers of A and B, C 

and D, respectively, and with the radius
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Figure 2.1. The origin of coordination in wire rope-cylinder bracing system 

 
The cylinder is illustrated for lateral corresponding to drift of frame equal to zero and δs in Fig. 2.2.  The 

 length of beam and height of column are 4m and 3m, respectively, and the length of cylinder is 40 cm. 

The inner diameter of cylinder minus wire rope diameter is assumed as 5 cm. According to Fig 2.2, the 
cylinder has experienced both deformation and displacement. Therefore, if the cylinder is very soft one 

wire rope does not work before straightening. 
 

 
 

Figure 2.2. The deformation of very soft cylinder under lateral load 
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3. THE EFFECT OF SOFT CYLINDER'S DIMENSIONS ON WIRE-ROPE BRACING SYSTEM 

 

Here, δs, a function of cylinder dimensions is determined in order to study the behavior of bracing with a 

very soft cylinder. Regardless the cylinder situation (horizontal or vertical) the value of δs increases by 
increasing the length of cylinder and vice versa. If the inner diameter of the cylinder decreases, the value 

of δs increases and it decreases by increasing the cylinder diameter. In other words the wire rope is 

deviated from its primary direction (frame's diagonal direction) and its length increases if the cylinder 
length increases or the inner diameter of cylinder decreases. Therefore, the value of δs increases, the wire 

rope works after receiving a larger lateral displacement and the ductility of braced frame increases. 
 
The horizontal cylinder will be effective by satisfying the below equation:
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The value of δs is zero when 
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X-cable bracing. If cylinder is vertical, it is effective when p c
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. If the diameter and length of cylinder increase simultaneously, δs increases by the length 

increase. However, δs decreases if the inner diameter of cylinder increases. Therefore, the inner diameter 

and length of the cylinder can increase while δs remains constant. 

The dimensions of cylinders with the same δs can be obtained by the below formula: 

                                                   

                                 (3.2) 

If the cylinder is horizontal, x = cylinder length (lp) and y = inner diameter of cylinder minus wire rope 

diameter (
p B

ϕ ϕ− ); in case of vertical cylinder x =
p B

ϕ ϕ−
 
and y = lp. The constant δs is assumed in Eqn. 

3.2. for a portal frame with certain dimension and the x-y curve is depicted representing the dimensions of 

different cylinders with the same δs, Fig. 3.1 . The curve is plotted by MATLAB software; the frame has  

lp = 4m and hc = 3m for fixed δs. 

 

 

Figure 3.1. The dimensions of very soft cylinder with constant δs (δs is as per mm) 
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In Fig. 3.1. the straight line which is in the direction of frame diagonal shows that δs=0. In this case the 

slope of wire rope in the cylinder is equal to that outside the cylinder; i.e. equal to the frame diagonal 

slope in the ordinary x bracing. The curves, bellow the straight line, indicate the horizontal cylinders in 

which the slope of wire rope in the cylinder is less than that of frame diagonal. The curves over the 
straight line are corresponded to the vertical cylinders in which the slope of wire rope in the cylinder is 

more than that of frame diagonal. Here, δs values are 20, 40, 60 and 80 mm which increase in accordance 

with the distances between curves and straight line. A considerable point in Fig. 3.1 is that by increasing 

δs, the distances between adjacent curves are reduced gradually. For example the space between the curves 

of δs=20mm and δs=40mm is higher comparing with δs=40mm and δs=60mm and lower in comparison 

with δs= 0mm ,δs=20mm. Another noticeable point in Fig. 3.1. is that the curves are symmetric to the 
frame diagonal line, corresponding to δs=0. This fact is controlled by considering a random point, A 

(xo,yo), in Fig. 3.1. representing a cylinder with specified dimensions. lb is the beam length and hc is the 

column height. According to the relationships in analytic geometry, the coordinates of symmetrical point 

(A) with respect to the line
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The proof is as follows: 
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The above equations show that wire ropes have the same total lengths in both cases. The first and second 

terms in the relation represent the lengths of wire rope outside and inside the cylinder, respectively. It is 

assumed that the lengths of inner wire ropes are identical in both cases (corresponding to the points A and 

A'); the lengths of outer wire ropes are also identical in both cases. The assumption is proved as follows: 

                                                                   (3.5) 
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To proof the Eqn. 3.5, the right side is calculated to reach the left side: 
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To proof Eqn. 3.6, the right side is calculated to reach the left side: 
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According to the proved Eqns. 3.5 and 3.6, if the dimensions, length (x) and height (y), of two cylinders 

with the same δs are symmetric to the line c

b

h
y x

l
= , the internal and the external lengths of their wire 

ropes are equal. 
δsh is the δs for horizontal position of the cylinder and δsv is the δs for vertical position of the cylinder. 

Regarding Fig. 3.1. if in a wire rope-cylinder braced frame, lb > hc, then  δsv is greater than δsh. In order to 

obtain δsv, the symmetrical point of A= (xo,yo) to the line y = x, should be calculated. The new point has 

larger distance from the line c

b

h
y x

l
= and therefore larger δs in comparison with the point A. By contrast 

if lb < hc , then δs in the new point is larger for the horizontal position of cylinder comparing to its vertical 
position. 

 

Regarding a constant δs, if the longitudinal direction of cylinder is parallel to smaller dimension of the 
frame, the cylinder's dimensions are smaller comparing to that of parallel to larger dimension. In order to 

obtain the minimum length of cylinder, its smallest possible inner diameter is chosen and its longitudinal 

direction is paralleled to the smaller dimension of the frame. 

 
Based on Fig. 3.1., the cylinder's dimension, small or large, is not a factor in δs determination. It is 

obvious that smaller dimensions of cylinders are better due their lower spaces regarding themselves and 

their rotations. On the other side, as the wire ropes should pass through the cylinder, its dimensions cannot 
be smaller than a specific value. If the diameters of the wire ropes are equal to φb, then the inner diameter 

of the cylinder should be larger than 2φb.. Consequently, in a special design with a specified δs, the 

smallest possible inner diameter (2φb) is recommended and the cylinder's length is calculated by Eqn. 3.2. 
If lb> hc, then the smallest possible dimensions of the cylinder are found for vertical position of cylinder; 

however, they are  calculated for a horizontal position where lb < hc. 

 

 

4. IDEAL HYSTERSIS CURVES FOR THE FRAMES WITH WIRE ROPE– SOFT CYLINDER 

BRACING 

 
Ideal hysteresis diagrams of an MRF braced with wire rope-soft cylinder bracings is drawn by superposing 

two ideal hysteresis diagrams plotted for an MRF (Fig. 4.1.) and a simple frame braced with wire rope-

soft cylinder (Fig. 4.2.) separately.   

 



 

 

 
 

Figure 4.1. Ideal hysteresis diagram of an MRF 

 

 
 

Figure 4.2.  Ideal hysteresis diagram of a simple frame braced with wire rope-soft cylinder 

 

Wire rope bracing reaches its ultimate strength at the lateral force (Fcable) and its ultimate strength at the 

drift (δcable). According to Fig. 4.2., the wire ropes are not effective until lateral displacement reaches δs 

and the system acts like without bracing. In this case the length of wire rope bracing is more than frame's 
diameter for the drifts less than δs. Therefore, as lateral load increases, the angel between the wire ropes 

inside and outside the cylinder is gradually reduced up to zero in δs and the wire rope becomes straight 

and starts working. In case of existing no cylinder and no loose wire ropes, δs would be zero and the wire 
rope bracing act as X-cable bracing. 
 

In Fig. 4.3. the hysteresis diagram of a MRF with wire rope-soft cylinder bracing is obtained by 

superposing the hysteresis diagrams of Figs. 4.1. and 4.2. 

 
 

Figure 4.3. The hysteresis diagram of MRF braced with wire rope-soft cylinder bracing 



 

 

For optimum design of very soft cylinder, the dimensions of the cylinder should be selected in such a way 

that the collapse of frame of and tear of wire rope occur simultaneously. In this case the optimized δs is as 

follows: 

 

  

(4.1) 

If 
opts s

δ δ< , then the wire rope is torn before the frame reaches its ultimate strength and the frame's 

ductility cannot be used.  

If
 op ts s
δ δ> , then the frame reaches its ultimate strength before tearing the wire rope and therefore the 

total capacity of wire rope cannot be used. Theoretically, the best frame with wire rope-cylinder bracing is 

the one in which
o p ts s

δ δ= unless drift limitation forced us using smaller 
s

δ .
 

 

 

5. CONCLUSIONS
  

In this study the behavior of wire rope-cylinder bracing is discussed theoretically regarding very soft 
cylinder. The behavior of such bracing depends on the dimensions of the cylinder. That is by increasing 

the length of cylinder or decreasing its inner diameter, the bracing acts in larger drifts and causes the 

increase of frame's ductility. If lb > hc, then δs is larger in the vertical position of cylinder comparing to 

that in its horizontal position. If lb < hc, then δs is larger in horizontal position of cylinder in comparison 
with that in its vertical position. Moreover, for obtaining the smallest dimensions of cylinder its 

longitudinal direction be parallel to the smaller dimension of the frame. The dimensions of the cylinder 

should be calculated with respect to the allowable drift of the frame. In case of being no limitation on drift, 
the cylinder is designed optimally based on the synchronization of frame collapse and wire rope tear. 

Hysteresis diagram of an MRF with wire rope-cylinder is expressed by superposing the hysteresis 

diagrams of MRF and simple frame braced with wire rope-cylinder bracing plotted separately. 
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