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SUMMARY: 
In many seismic codes the use of simulated ground motions for dynamic structural analysis is already 

considered. However, from the structural engineer point of view, the use of such simulated accelerograms is not 

very attractive, mainly because more seismological knowledge background is needed. For this reason, a user 

friendly freeware computer program named SIMULSIS was developed to help structural engineers to generate 

simulated accelerograms. A new finite-fault stochastic method was developed for ground motion simulation and 

implemented in the program together with an equivalent linear model that accounts for superficial soil dynamic 

amplification. The capabilities of the program and the precision of results produced are illustrated by the 

simulations carried out for two recorded earthquakes. Moreover, some suggestions related to the use of the 

developed computer program not only for seismic structural analysis purposes but also in the future generation 

of hazard maps are presented. 
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1. INTRODUCTION 
 

According to many seismic codes namely the Eurocode 8 (CEN, 2004), time-history representation of 

seismic action can be divided in three major groups: recorded accelerograms, artificial accelerograms 

(synthetic accelerograms generated so as to match an elastic response spectra), and simulated 

accelerograms (synthetic accelerograms generated through a physical simulation of source and travel 

path mechanisms). 

 

In many regions like Portugal where the historical knowledge of massive destruction due to the 1755 

earthquake exists, but not enough strong-motion records for engineering purposes are available, the 

alternative is to use “synthetic” accelerograms. For a structural engineer the use of artificial 

accelerograms is very attractive, mainly because they do not depend on seismological knowledge. 

However, it is now widely accepted that the use of artificial accelerograms in seismic nonlinear 

analysis have many problems, because they tend to be particularly unrealistic (Bommer and Acevedo, 

2004). This is the reason why simulated accelerograms can be a valid option. 

 

There are many methods available for strong ground motions simulations, being the stochastic 

methods an “Engineering” approach to the problem with successful comparisons of predicted and 

recorded data (Erdik and Durukal, 2006). Recently, many computer programs for stochastic 

earthquake ground motion simulation have been developed for seismic hazard analysis purposes. 

Boore’s point source method was implemented in SMSIM computer program (Boore, 1983, Boore, 

2003, Boore, 2005). FINSIM (Beresnev and Atkinson, 1998) and EXSIM (Motazedian and Atkinson, 

2005) are other well known programs for stochastic ground motion simulation, which adopt a finite 

fault model. Another finite fault model, including site effects, was developed (Carvalho et al., 2008) 

and used for Portugal seismic risk assessment (Oliveira, 2006). 

 

In this context, a computer program named SIMULSIS was developed mainly for structural analysis 



purposes. SIMULSIS freeware software was created to be user friendly, with a graphical input and 

output interface. 

 

 

2. PROGRAM SIMULSIS 
 

SIMULSIS is a program developed in Object Pascal. The first version of the program had some 

difficulties in simulating earthquakes (Estêvão and Oliveira, 2008). Later, some changes were 

introduced and lead to several improvements (Estêvão and Oliveira, 2010). Finally, more 

modifications were included in the present version (ver. 1.02), which seems to be much more reliable 

(Estêvão, 2012). The user has many simulation options and he is allowed to select the most suitable 

method according to his objectives. 

 

2.1. Simulation developed methods 
 

The simulated accelerogram results from the contribution of a number of small earthquakes as 

subfaults that comprise a big fault. A large fault is divided in NF subfaults and each subfault is 

considered as a point source event. In SIMULSIS the rupture spreads radially from the hypocenter, 

with a constant or a variable rupture velocity Vri (depending on the preference of the user) on each 

subfault i, so time series results from a superposition of sinusoidal waves that are summed with a 

proper delay 
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The wave amplitude Ai,n(∆ti) is the contribution of the point source i to the frequency ωn (equal spaced 

at ∆ωi), with random phase angles θn,i 
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TF is the total equivalent point source fault rupture duration, and Fi(ωn,M0i) is the point source 

spectrum of shear waves, of each subfault (Estêvão, 2012). P(ωn,Ri) is a path attenuation function, and 

HR(ωn) is a filter (function of a cut-off frequency ωmax=2·π·fmax and of a reduction parameter k0) 

that accounts for the diminution of the high-frequency motions in a rock outcropping reference site 

(Boore, 1983, Boore, 2003). HS(ωn) is a nonlinear soil transfer function for S waves, obtained from an 

equivalent linear analysis of a one-dimensional “soil column” with a procedure similar to the 

implemented in SHAKE91 program (Idriss and Sun, 1992), but with the maximum soil distortion 

computed in frequency domain using stochastic methods (Carvalho et al., 2008). 

 

The parameters of the deterministic envelope function gi(t) are obtained so that an effective duration 

(Bommer and Martinez-Pereira, 1999) between two values of Arias intensity is accomplished for each 

point source (Estêvão, 2012). 

 

Two methods were implemented in SIMULSIS. The first method developed (A) was based on several 

concepts that support the program EXSIM (Motazedian and Atkinson, 2005) but with some 

modifications (Estêvão, 2012). The concepts of dynamic corner frequency (Motazedian and Atkinson, 

2005) and active pushing area (Motazedian and Moinfar, 2006) were also adopted. 

 
In order to improve simulation results of past earthquakes, mainly in time domain, another method (B) 

was developed and implemented in SIMULSIS. The main difference between methods A and B is 

related to the determination of corner frequency (Estêvão, 2012). 

 



Based on our experience, we recommend method A for structural analysis purposes when constant slip 

distribution and rupture velocity are adopted for the ground motion simulations. The method B seems 

to be more suitable to reproduce recorded accelerograms when non constant slip distribution and 

rupture velocity are adopted. 

 

 

2.2. Program validation 
 

To demonstrate the capabilities of the programme, SIMULSIS was used to simulate two past 

earthquakes. 

 

2.2.1. Simulation of the 28 September 2004 Parkfield earthquake 

The 2004 Parkfield earthquake was a predicted seismic event that occurred in the California. For that 

reason there is much information about it. The simulations were carried out for two different sites at 

Turkey Flat (near each other), where the earthquake was recorded (Table 2.1). Before the earthquake 

occurrence, this place was selected for a soil amplification blind test (Tucker and Real, 1986, Real, 

1988, Real et al., 2006). For this reason the source of this earthquake is well known and site 

parameters are perfectly characterized, so we believe that it is a good place to validate program 

SIMULSIS. 

 

Simulations were carried out for sites #3 and #4 of Turkey Flat (Fig. 2.1) considering the fault rupture 

and slip distribution proposed by Chen Ji (Ji, 2004), with a variable rupture velocity with a mean value 

of 2.8 km/s (Liu et al., 2006), and a stress drop of 150 bar, which is in the range of values obtained for 

the rupture (Allmann and Shearer, 2007). Method B of SIMULSIS was adopted (Estêvão, 2012). 

 
Table 2.1. Parkfield - Turkey Flat stations information (CESMD - Center for Engineering Strong Motion Data) 

CGS - CSMIP Station Latitude Longitude Site Geology 

Turkey Flat #3 Station No. 36519 35.8868 N 120.351 W Shallow alluvium 

Turkey Flat #4 Station No. 36518 35.8915 N 120.353 W Soft rock (sandstone) 

 

First, the parameter fmax was established to 10 Hz (k0 = 0), to adjust peek acceleration at site #4 (rock 

outcropping). Than, soil profile (Tucker and Real, 1986, Real, 1988) of site #3 (alluvium) was 

introduced in SIMULSIS. Simulation results are presented in Fig. 2.2 (Estêvão, 2012), and seem to 

show a good approximation to the recorded values, reproducing the observed soil amplification. 

 

 
 

Figure 2.1. 2004 Parkfield earthquake rupture location adopted for the simulations. 
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Figure 2.2. Recorded and simulated accelerograms (cm/s
2
) and corresponding response spectra at Turkey Flat. 

 

2.2.2. Simulation of the 27March 2010 Maule earthquake 

This Chile subduction earthquake (Mw=8.8) produced important soil amplification effects, which were 

evident in the acceleration response spectra of many records obtained in different locations (Saragoni 

et al., 2010, Boroscheck et al., 2010). Moreover, the simulation of this earthquake is more challenging 

for SIMULSIS, because we do not have the exact knowledge about the soil layers characteristics of 

each station. For this reason, this earthquake is also a good test for the capability of SIMULSIS to 

simulate the earthquake effects on a site where the real soil conditions are unknown. 

 

These new simulations were carried out considering the rupture solution proposed by Gavin Hayes 

(Hayes, 2010). The slip distribution and rake is presented at Fig. 2.3. Rupture location is presented at 

Fig. 2.4. 

 

 
 

Figure 2.3. 2010 Chile earthquake slip distribution and rake adopted for the simulations. 

 

Simulations were carried out using method B of SIMULSIS, for a central site of Santiago, and 

compared with the recorded ground motions (Boroscheck et al., 2010). We adopted a stress drop of 

100 bar, with ρ=2.8 g/cm
3
 and β=3.7 km/s, which are the density and shear-wave velocity in the 

vicinity of the source, respectively. The path attenuation expressions adopted are the same that were 



adopted in North American studies (Atkinson and Boore, 1995). It was considered a variable rupture 

velocity, with a mean value of 2.25 km/s. The time rupture adopted is presented at Fig. 2.5. Site 

ground motion durations were calculated using empirical expressions (Reinoso and Ordaz, 2001). 

 

 
 

Figure 2.4. 2010 Chile earthquake rupture location adopted for the simulations. 

 

 
 

Figure 2.5. 2010 Chile earthquake source subfault time rupture adopted for simulations. 

 

As already mentioned, we do not know the exact site soil profile characteristics. In contrast with 2004 

Parkfield earthquake simulation sites (where there exists a good soil characterization), the site 

parameters adopted for 2012 Chile earthquake are only an approximation which leads to an acceptable 

simulation results. The adopted characteristics were based in several studies existent for the city of 

Santiago de Chile (Pilz et al., 2011, Bonnefoy-Claudet et al., 2009). A soil column with 150 m, with 

three layers with different parabolic variation of shear wave velocity (VS), was considered (fmax = 6 

Hz). The VS of superficial layer (20 m) is between 120 and 350 m/s, the VS of second layer (30 m) is 

between 450 and 700 m/s, and VS of the third layer (100 m) is between 800 and 1700 m/s. Bedrock VS 

was established to 3800 m/s. All these values were selected through a trial and error process. It is 

possible that different parameters (more close to the reality) could lead to better simulation results. 

 

SIMULSIS simulation results are presented at Fig. 2.6. 

 



-400

-300

-200

-100

0

100

200

300

400

A
c
ce

le
ra

ti
o

n 
(c

m
/s

2 ) Channel 1

-400

-300

-200

-100

0

100

200

300

400

A
c
ce

le
ra

ti
o

n 
(c

m
/s

2 ) Channel 2

-400

-300

-200

-100

0

100

200

300

400

A
cc

e
le

ra
ti

o
n
 (

c
m

/s
2 ) SIMULSIS (best)

 

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2

S
p

ec
tr

al
 a

cc
el

er
at

io
n

 (
cm

/s
2
)

Period (s)

SIMULSIS (best simulation)

SIMULSIS (mean of 20 simulations)

Channel 1

Channel 2

 
 

Figure 2.6. Recorded and simulated accelerograms (cm/s
2
) and corresponding response spectra at Santiago. 

 

 

3. DISCUSSION  
 

A detailed sensitivity analysis of several factors was carried out using SIMULSIS results (Estêvão, 

2012). The study considers the influence of earthquake focus location relatively to the fault plane, 

fault plane discretisation, rupture velocity, asperity locations, subfault rupture duration, stress drop 

(Fig. 3.1A) and geological site effects factors, such as fmax value (Fig. 3.1B), soil surface VS,30 value, 

impedance contrast and plasticity index variation. The study also included a point versus fault rupture 

results comparison. We believe that this sensitivity analysis was very important to improve earthquake 

simulation results. The knowledge that this study allowed do obtain was very useful to carry out all the 

simulations presented in this work. 
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Figure 3.1. Example of the influence of (A) stress drop and (B) fmax on the response spectra simulation results. 

 

The SIMULSIS results of 2004 Parkfield earthquake simulation seems to be very close to the recorded 

values, for both sites (#3 and #4). Peak accelerations are almost exact and simulated response spectra 

match the recorded values at low and high period values. Probably, these good results are due to the 

accurate knowledge about source rupture and site characteristics (namely layers definition, shear wave 

velocity, density and plasticity index), and demonstrate SIMULSIS capabilities of reproducing ground 

motions characteristics. 

 

The 2010 Maule (Chile) earthquake simulation results are less accurate, especially for periods higher 



than one second. One explanation for this problem could be the adopted source rupture solution, 

because the simulations exhibits greater durations when compared with recorded accelerograms. 

Probably the use of just one attenuation law is not suitable for such great rupture dimensions. Another 

explanation for the observed differences can be related to site soil profile, which is not well defined. In 

future, further simulations should be carried out with different source rupture solution and site 

characteristics, to improve 2010 Chile earthquake results. 

 

Simulations that we carried out with SIMULSIS have revealed pros and cons of using simulated 

stochastic ground motion accelerograms for structural analysis purposes, and also for seismic hazard 

analysis purposes. Some of those pros and cons, which we consider most important, are presented in 

Tables 3.1 and 3.2. 

 
Table 3.1. Selected pros of simulated ground motions 

Issue Structural analysis purposes Seismic hazard analysis purposes 

Focus location Allow to control ground motion duration 

and intensity. 

Can contribute to study the influence of 

focus location on the ground motion. 

Slip distribution Allow to control non stationary 

frequency content of ground motion. 

Can contribute to study the influence of 

the slip pattern on the ground motion. 

Rupture velocity Allow to control non stationary 

frequency content and duration of ground 

motion. 

Can contribute to study the influence of 

the rupture velocity on the ground 

motion. 

Point source duration Allow to control ground motion duration. --- 

Stress drop Allow to control ground motion 

intensity. 

Can contribute to study the influence of 

stress drop on the ground motion. 

Attenuation law Allow to control ground motion 

frequency content and intensity. 

Can contribute to study the influence of 

path attenuation on ground motion. 

fmax or k0 Allow to control ground motion 

frequency content and intensity. 

--- 

Soil characteristics Allow to control ground motion 

frequency content and intensity. 

Can contribute to study the influence of 

geologic site effects on ground motion. 

Random phase angles --- --- 

 
Table 3.2. Selected cons of simulated ground motions 

Issue Structural analysis purposes Seismic hazard analysis purposes 

Focus location --- It is impossible to predict, so it is 

advisable to use the worst and best case 

scenarios. 

Slip distribution --- The same problem as for focus location. 

Rupture velocity --- The same problem as for focus location. 

Point source duration --- The same problem as for focus location. 

Stress drop --- The same problem as for focus location. 

Attenuation law --- Should be selected from previous 

recorded earthquakes. 

fmax or k0 --- It has a great influence on the results. It 

seems advisable to use local site values 

obtained from previously recorded 

earthquakes or from ambient noise 

measurements. 

Soil characteristics --- It has a great influence on the results. 

Must have a detailed soil layers 

characterization. 

Random phase angles Each simulation gives a different result, 

so it is advisable to use a result as near as 

possible of mean value. 

Each simulation gives a different result, 

so it is advisable to use the mean value. 

 

It seems that stochastic ground motion simulations have more pros than cons, because normally 

simulation results must be close to a known target response spectrum. For example, EC8 indicates that 

a minimum of three simulated accelerograms should be generated so as to match an elastic response 



spectrum, within some limits (Fig. 3.2). 
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Figure 3.2. Example of using simulated accelerograms according to EC8 (Estêvão and Oliveira, 2010). 

 

We believe that for structural analysis purposes the bigger disadvantage is related to random phase 

angles generation scheme, because results are different for each simulation carried out with the same 

simulation parameters. However, this problem can be minimized using only the simulation results that 

are closer to the mean values. Future work on phase angle spectrum evaluation would be helpful to 

minimize this problem. 

 

For seismic hazard analysis, stochastic ground motion simulations have more problems, because the 

results are very dependent on source, path and site parameters. For a given earthquake magnitude, 

there are many possible patterns for slip distribution, rupture velocities and stress drop, for example. 

Only if the future earthquake presents, exactly, all the characteristics adopted for the simulations, the 

results could match the future records. It is obvious that this hypothesis has a low probability to occur, 

so it is nearly impossible to predict the seismic effects using programs like SIMULSIS. However, they 

can be very useful tools to evaluate future possible earthquake scenarios. 

 

It is important to find a reliable way of using stochastic ground motion simulations in seismic risk 

assessment, in together with more traditional approaches. 

 

All the simulations carried out with SIMULSIS have shown a great influence of geological site 

characteristics on results. This can explain some damage concentrations in several earthquake affected 

areas. 

 

 

4. CONCLUSIONS  
 

Earthquake simulations presented in this work, namely the 2004 Parkfield earthquake simulations, 

allows us to conclude that SIMULSIS is able to reproduce ground motion effects, if a proper source, 

path and site parameters are considered. 

 

For structural analysis purposes we did not find any important cons of using stochastic simulated 

ground motions to mach a target response spectrum. Probably is a better choice than using artificial 

accelerograms which seems to be less realistic. The major problem that we experienced was related to 

the random phase angles variation, which can be partially solved by selecting the accelerograms which 

are closer to the mean result values. 

 

Whenever there is not a target response spectrum to match, the use of stochastic simulated ground 

motions for seismic hazard analysis purposes present pros and cons. Most of the cons are due to the 

uncertainty related with the rupture process, path and site characteristics. On other hand, pros are 

mostly related to the possibility of changing one variable and seeing what happens to ground motions, 

being like a virtual earthquake laboratory. 

 



The use of stochastic simulated ground motions can be very useful to establish possible earthquake 

scenarios, for seismic hazard analysis purposes of regions where there are few earthquake strong 

motion records available. However, in face of our sensitivity analysis results, we believe that it should 

be done carefully, because of the influence of parameter variability on simulated earthquake results. 

 

The huge variability of stochastic simulation results, which depends on the earthquake and site 

characteristics, seems to indicate that it is impossible to predict the exact effect of a future earthquake 

using computer programs like SIMULSIS. The results of this kind of program should be understood as 

a mean possible earthquake scenario. However, if the statistical distributions of all parameters that 

influence earthquake results are considered, stochastic ground motion simulations can be very helpful 

for seismic hazard analysis purposes. 
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