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SUMMARY 
A linear programming (LP) inversion method in a dual formulation was applied to reconstruct the kinematics of 
finite seismic ruptures. In a general setting, this approach can yield results from several data sets: strong ground 
motion, teleseismic waveforms or/and geodesic data (static deformation). The dual formulation involves the 
transformation of a normal solution space into an equivalent but reduced space: the dual space. The practical 
result of this transformation is a simpler inversion problem that is therefore faster to resolve, more stable and 
more robust. The developed algorithm includes a forward problem that calculates Green’s functions using a 
finite differences method with a 3D structure model. To evaluate the performance of this algorithm, we applied it 
to the reconstitution of a realistic slip distribution model from a data set synthesised using this model, i.e., the 
solution of the forward problem. Several other standard inversion approaches were applied to the same synthetic 
data for comparison. 
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1. INTRODUCTION 
 
The reconstitution of seismic rupture processes from records of their effects at the Earth’s surface 
requires the use of discrete inverse theory methodological paths. In this context, the modelling of a 
seismic rupture involves determining the values of the finite-dimensional parameters of a model that 
numerically reproduces the effects of the earthquake on the Earth’s surface. The most popular data sets 
used to describe these effects are elastic motion recorded at a near-field distances from the source 
(strong ground motions), elastic motion recorded at a far-field distances (teleseismic waveforms), and 
inelastic deformations recorded by geodetic techniques such as Global Positioning System (GPS) and 
Interferometric Synthetic Aperture Radar (InSAR). The detail and accuracy of the computed 
characteristic parameters for large earthquakes depend on a combination of two factors: the methods 
used and the input data. The kinematic model of a finite seismic source consists of a spatiotemporal 
distribution of slip vectors, i.e., a vector field u(t,r) on a fault plane divided into a grid of small 
elements, or subfaults. Each slip represents the motion of a corresponding subfault. All subfaults are 
considered to have the same size, geometry and orientation  (rectangular and oriented along strike and 
dip directions). The slip vector associated with each subfault is characterised by the following 
parameters: the start time, direction (rake angle), magnitude and the evolution with time (source time 
function) or the rise time of a defined scalar time function. 
 
The most popular approach for determining the slip distribution models are the inversion of the 
seismic near-source strong ground motion waveform (e.g., Asano and Iwata 2009; Suzuki et al., 2009; 
Hartzel et al., 2007) and the joint inversion of near-source and teleseismic waveforms (e.g., Delouis et 
al., 2009; Yagi, 2004; Mozziconacci et al., 2009). Near-source data have the advantage of allowing the 
rupture kinematics to be reconstructed in more detail than when teleseismic waveforms are used 
exclusively. However, the use of this kind of data can pose some problems : accelerometer coverage 
unavailable or poor for some relevant seismic zones; inexistence of accurate of Earth structures 
models and the exigency of a very high computational power for waveform modelling. 



According the Discrete Inverse Theory, the modelling of any physical system by inversion involves 
three phases: the formulation of the forward problem, its parameterisation and the determination of the 
inverse problem. The forward problem corresponds to the application of the laws of physics to 
compute the data (elastic displacement, velocity, acceleration or deformation) using a given model. In 
the context of this study, the main issue in the forward problem is the calculation of the Green’s 
functions, which are the approximated solution of the second-order elastodynamic equation at any 
point in an elastic medium when a perturbation (produced by a source with known mechanism) is 
applied at another point. Of the several approaches for solving this problem, the simplest is that set 
forth by Bouchon (1980), using a layered earth structure (a 1D velocity model) to obtain reasonable 
Green’s functions for low frequencies (<1 Hz). When considering the propagation of seismic radiation 
through a complex 3D anisotropic earth structure, algorithms based on finite differences (e.g., Olsen 
and Archuleta, 1996; Larsen & Schultz, 1995), finite elements (e.g., Bao et al., 1998), or spectral 
elements (Komatitsch & Villote, 1998) should be used.  
 
The first efforts to reconstruct the spatial and temporal rupture processes of finite seismic sources 
using the inversion of seismic waveforms were presented in theoretical works (Gilbert, 1975; Hartzell 
et al. 1978) and applied to the 1979 Imperial Valley earthquake (Hertzell and Heaton, 1983). These 
early works described the rupture model as a succession of slips on sections of a rectangular fault 
plane. The initiation time of each section (subfault) is controlled by a rupture front that spread over the 
fault plane with constant velocity in all directions from the hypocentre. The evolution of each slip is 
given by a scalar function with a fixed shape (source time function). This rupture scheme is known as 
the single time window model. Two aspects are difficult to resolve in the original single time window 
models. The first is related to the fact that the shape and duration of the source time functions, which 
are equal for all subfaults, limit the frequency range of the modelled data. The second is the incorrect 
assumption of constant rupture velocity imposed, which also affects the accuracy of the results of the 
data modelling. These difficulties were partially overcome by considering the slip in each subfault as a 
succession of elementary source time functions, which requires that the ruptures of each subfault occur 
in separate time intervals. This model, the multiple time windows model (Olson and Apsel, 1982; 
Cohee and Beroza, 1994), ensures a more realistic simulation of the ruptures at the expense of 
calculation time. 
 
In the present framework, the finite-source models (e.g., Asano and Iwata, 2009; Mozziconacci et al., 
2009, Robinson and Cheung, 2010; Delouis et al., 2009) are similar to those used in previous works. 
The major differences are the increase in the scale of the computation and the use of new optimisation 
techniques. 
 
 
2. FORWARD PROBLEM 
 
The description of the elastic displacement produced at the Earth’s surface as the result of applied 
body forces, or slip discontinuities, in a semi-infinite elastic medium is the basis for the formal 
development of the methods for studying seismic sources. The discretisation of the integral form of the 
representation theorem (Aki and Richards, 1980) through proper parameterisation of the source allows 
for the computation of the synthetic seismograms. The fault plane is discretised into a set of N 
subfaults defined by a grid covering the entire surface. Each subfault is disposed along a square 
orthogonal referential, xOy. The time of rupture is also discretised into Nt intervals of time. Each 
subfault l (l=1,N) constitutes a point source that at certain time step k (k=1,Nt) initiates slips (breaks) 
in direction m according to a source time function S!,!,!(t). The slip vector is defined by the 
magnitude of the two orthogonal components m: one in the strike direction (m=1) and the other in the 
dip direction (m=2). 
 
The rupture described by this model is a sequence of slips characterised by a) position, b) initial time, 
c) amplitude, d) direction, and e) source time function. The adopted finite source model allows each 
subfault to be reactivated and break again in a different stage of the rupture after the first break. The 
complete parameterisation of this model requires the definition of the geometry of the fault plane, the 



hypocentre position, the size of each subfault, and the time-step in which the rupture was discretised. 
According this model, the ith component of displacement at station j, !!

! ! , is calculated by the 
following equation (where the asterisk, *, denotes a convolution):  
 

!!
! = !!,!,!(!) ∗ !!,!,!,!,!(!)!

!!!
!
!!!

!!
!!! !!,!,!  (1) 

 
where i, j, k, l, m represents, repectively, the direction of the displacement at observation point 
(1=North-South, 2=East-West, 3=Vertical), the observation point, the time step where the time of 
rupture was discretised, the subfaults and the components of the slip vector (1= strike direction; 2= dip 
direction). !!,!,!,!,!(!) is the Green’s function that represents the temporal evolution of the component 
i of the displacement at the observation position j due to a unitary slip in the direction m produced at 
source l at time t,, and !!,!,! represents the slip. The Green’s functions were computed in terms of 
wave propagation in 3-D media using the E3D finite-difference code (Larsen & Schultz 1995).  
 
The system of linear equations (1) that defines the computation of the synthetic seismograms (forward 
problem) can be translated to matrix language as  
 

! = A!  (2) 
 
where u is the vector that contain all seismograms, x is the vector of the slips of all subfaults in whole 
time steps (slip distribution model), and A is the matrix of Green’s functions.   
 
 
3. INVERSE PROBLEM 
 
Following the procedure described by Das and Kostrov (1990), we denote ! − A! by r. We will 
minimize the absolute misfit 

! = !!! . 
 

If we represent    ! = !! − !!, where  !!! ≥ 0, !!! ≥ 0,  the function f  will be linear 
 

! = !!! − !!!
!

 

 
and the slip determination problem can be formalized as the linear programming (LP) problem 
 

!!! − !!!! → min,      
!! + !! − !! = !,
            !!! = M!                                
!! ≥ 0, !!! ≥ 0, !!! ≥ 0  

 (3) 

 
where, as in Das and Kostrov (1990),  !!! = M!  is the requirement that total seismic moment equals 
a known value, and the vector !    represents the medium rigidity at the corresponding subfault 
multiplied by the subfault area times time step   ∆! . The weak causality-like constraint is also included, 
namely, we assume that the slip rate is zero at any subfault and time step which would produce a 
signal before the first arrival at any station from the hypocentral subfault. 
 
For LP problem (3) can be formulated the dual LP problem, as follows: 
 

 
!!! +M!z! → max,                              
!!! + !!z! ≤ 0,                                        

−1 ≤ !! ≤ 1, ! = 1,… !!.                        
  (4) 

where z! and the coordinates !! of the vector  !, ! = 1,… !!, are the corresponding dual variables, !! 



is the dimension of  !. 
 
It is interesting to note that in the dual formulation (4), all seismograms data are localized in the 
functional. The problem restrictions are unaffected by seismogram vector u and total seismic moment 
M!. This makes it possible to find a feasible solution for the dual LP problem (4) in advance. When 
new seismograms are given, the resolution of LP problem (4) starts from a good initial basis. 
 
Another advantage of dual formulation (4) is that the variables  !! are limited to the interval from –1 to 
+1. They can not take large values which increases the computational stability of the algorithm. 
 
When the restriction !!! = M! is omitted in (3), the corresponding dual problem takes especially 
simple structure which is illustrated geometrically in Figure 1 
 

 
 

Figure 1. Geometric structure of the primal and dual linear programming formulations  
 
 
4. CASE STUDY SCENARIO 
 
To evaluate the proposed algorithm, we applied it to a synthetic seismic rupture scenario similar to 
real sources. This type of evaluation is extremely important because it is the only reliable way to 
analyse method performance when the expected results are known (Beresnev, 2003). The synthetic 
waveforms were calculated from (1) for a defined rupture model (Fig. 2) based on a set of 13 seismic 
stations distributed around the source in the geometry represented in Figure 3.	
  
	
  
The fault plane was divided into a grid of 36, 2 km × 2 km, subfaults. The rupture starts at the initial 
time at the 12-km-deep hypocentral node and travels in all directions with a variable velocity. The slip 
of each node is specified by the initial time, two components of the slip vector and a triangular Source 
Time Function (STF) with a rise time τ. The rupture time is discretised using a temporal gridding of 
0.3 s. The defined source model assumes that subfaults slip more than once at different stages of the 
rupture. The Green’s functions were computed using a finite-difference spatial and temporal grid 
spacing scheme of 0.5 km and 0.03 s respectively. The velocity model is a 100 km × 100 km × 70 km 
fragment of the 3D velocity model of SW Iberia (Grandin et al. 2007). Based on the velocity model 
and the spatial grid, the Green’s functions are significant to a maximum frequency of 1.3 Hz. Thus, the 
computed Green’s functions were filtered with a low-pass Butterworth filter with a cut-off frequency 
of 1.3 Hz to avoid the numerical noise. 



	
  

 
 

Figure 2. Rupture model defined. The first five individual panels (0-1s to 4-5s) show the distribution (in 1s time 
windows of the seismic moment release. The sixth panel (denoted by Total) shows the final slip distribution (red 
arrows) and the coloured contours show rupture time in 0.6-sec contours. The bottom panel denoted “Complete 

STF” represents the rate of moment release. 
	
  

 
 

Figure 3. Geometry of the tested situation. The 13 red triangles on the surface represent the seismic observation 
points; at the interior of the volume is represented the fault plane. 

 



5. RESULTS 
 
Inversions were performed on the same data set using three different algorithms: the dual linear 
programming formulation presented herein and two standard algorithms, the least-squares method of 
Lawson and Hanson (1974) using the formulation of Hartzell and Heaton (1983) and the primal linear 
programming formulation developed by Das and Kostrov (1990). The same Green’s functions and 
source parameterisations were used for all the procedures. Figure 4 presents the reconstructed rupture 
model calculated using the dual linear programming algorithm developed herein. The likenesses 
between this reconstructed model and the synthetic origin model (Figs. 4 and 2) are clear in both the 
spatial distribution of the slip and its spatial occupation over time, characterised by a non-uniform 
rupture front. The “total” slip distribution of the synthetic and reconstructed models indicates the 
spatial likeness; the evolution of the rupture, displayed in the sequence of snapshots and in the STF of 
the synthetic and reconstructed models, indicates a suitable temporal reproduction. 
 
For the reconstitution by the primal linear programming formulation, convergence to a similar solution 
was obtained but required a processing time approximately 100 times longer than the reconstruction 
using the dual formulation (approximately 12 min with the dual and approximately 14 h with the 
primal formulation) and with a great number of warnings. 

 
 

Figure 4. Rupture model reconstructed through the Dual version of Linear Programming algorithm developed. 
The first five individual panels (0-1s to 4-5s) show the distribution (in 1s time windows of the seismic moment 

release. The sixth panel (denoted by Total) shows the final slip distribution (red arrows) and the coloured 
contours show rupture time in 0.6-sec contours. The bottom panel denoted “Complete STF” represents the rate 

of moment release. 
 

As shown in Figure 5, the model reconstructed using the formulation of Hartzell and Heaton (1983), 
via the NNLS algorithm, differs significantly from the synthetic origin model (Fig. 2) in both total slip 
spatial distribution and slip temporal distribution.   
Comparing the observed and model-predicted waveforms is the only way to validate the 



reconstructions in many practical applications. In the trials performed	
   in	
   this	
  work,	
  a	
  surprisingly	
  
good	
   fit	
   was	
   obtained	
   in	
   all	
   cases,	
   even	
   when	
   the	
   model	
   differs	
   from	
   the	
   real,	
   reconstituted	
  
model.	
  This	
  result	
  proves	
  that	
  comparing	
  seismograms	
  is	
  not	
  a	
  reliable	
  indication	
  of	
  the	
  quality	
  
of	
  a	
  solution.	
  
	
  
5. DISCUSSION 
	
  
The	
   reconstruction	
   of	
   the	
   rupture	
   kinematics	
   for	
   a	
   large	
   earthquake	
   from	
   a	
   set	
   of	
   recorded	
  
effects	
   on	
   the	
   Earth’s	
   surface	
   remains	
   a	
   non-­‐completely	
   solved	
   problem.	
   Primal	
   linear	
  
programming	
   (LP)	
   techniques	
   (Das	
   Kostrov,	
   1990;	
  Hartzel	
   and	
   Liu,	
   1995)	
   are	
   an	
   appropriate	
  
tool	
   to	
   resolve	
   it	
   to	
   relatively	
   small	
   scale	
  of	
   solution	
  domains.	
   Primal	
  LP	
   techniques	
  utilise	
   an	
  
inversion	
  method	
  that	
  explores	
  the	
  full	
  solution	
  space.	
  The	
  ease	
  of	
  incorporating	
  constraints	
  to	
  
improve	
   solution	
   convergence	
   is	
   an	
   advantage	
   of	
   this	
   type	
   of	
   approach	
   over	
   other	
   global	
  
iterative	
  methods.	
  However,	
  when	
   the	
  problem	
   is	
  parameterised	
   to	
   involve	
  a	
   large	
  number	
  of	
  
equations,	
  its	
  solution	
  through	
  the	
  primal	
  LP	
  inversion	
  techniques	
  can	
  become	
  computationally	
  
expensive	
   and	
   difficult.	
   In	
   such	
   cases,	
   for	
   example,	
   reconstructing	
   the	
   rupture	
   kinematics	
   of	
  
large	
   earthquakes,	
   the	
   dual	
   LP	
   inversion	
   method	
   reported	
   herein	
   is	
   preferable	
   because	
   it	
  
reduces	
  the	
  dimension	
  of	
  the	
  variable	
  space	
  and	
  inputs	
  the	
  observed	
  data	
  (u)	
  into	
  the	
  objective	
  
function,	
  thus	
  increasing	
  the	
  stability	
  of	
  the	
  computation	
  process.	
  We	
  demonstrate	
  that	
  the	
  dual	
  
formulation	
   has	
   clear	
   advantages	
   in	
   terms	
   of	
   both	
   convergence	
   and	
   computing	
   time	
   when	
  
compared	
  with	
  the	
  primal	
  formulation	
  used	
  by	
  previous	
  authors.	
  	
  
	
  

	
  
	
  

Figure 5. Rupture model reconstructed through the NNLS algorithm. The first five individual panels (0-0.8s to 
3.2-4s) show the distribution (in 0.8s time windows of the seismic moment release. The sixth panel (denoted by 

Total) shows the final slip distribution (red arrows) and the coloured contours show rupture time in 0.52-s 
contours. The bottom panel denoted “Complete STF” represents the rate of moment release. 

	
  
The	
   ability	
   of	
   the	
   slip	
   inversion	
  methods	
   to	
   construct	
   detailed	
   rupture	
   scenarios	
  makes	
   them	
  
particularly	
   attractive	
   for	
   studying	
   a	
   seismic	
   source.	
   However,	
   a	
   detailed	
   analysis	
   of	
   the	
  



solutions	
  provided	
  by	
  these	
  methods	
  reveals	
  the	
  requirements	
  for	
  the	
  successful	
  application	
  of	
  
these	
  tools.	
  The	
  first	
  is	
  the	
  choice	
  of	
  method;	
  a	
  number	
  of	
  different	
  ways	
  of	
  obtaining	
  inversion	
  
scenarios	
   are	
   available	
   in	
   the	
   literature,	
   all	
   of	
   which	
   have	
   similar	
   physical	
   and	
   numerical	
  
requirements	
  (e.g.,	
  Hartzel	
  and	
  Heaton,	
  1983,	
  Hernandez	
  et	
  al.	
  2001;	
  Valle	
  and	
  Bouchon,	
  2004).	
  
However,	
   applying	
   these	
   methods	
   to	
   the	
   same	
   data	
   for	
   the	
   same	
   events	
   produces	
   different	
  
results,	
  as	
  we	
  can	
  observe	
  by	
  comparison	
  of	
   the	
  works	
  of	
  Wald	
  and	
  Heaton	
  (1994)	
  and	
  Cohee	
  
and	
  Beroza	
  (1994)	
  for	
  the	
  1992	
  Landers	
  earthquake.	
  
Because	
  the	
  complex	
  nature	
  of	
  this	
  problem	
  does	
  not	
  allow	
  for	
  an	
  a	
  priori	
  knowledge	
  of	
  the	
  best	
  
solution,	
  the	
  use	
  of	
  real	
  data	
  is	
  not	
  proper	
  to	
  compare	
  methods	
  or	
  investigate	
  parameterisation	
  
schemes	
   by	
   analysing	
   solutions	
   (Beresnev,	
   2003).	
   This	
   investigation	
   can	
   only	
   be	
   performed	
  
using	
  synthetic	
  data	
  calculated	
  from	
  defined	
  rupture	
  models.	
  Therefore,	
  we	
  tested	
  the	
  stability	
  
and	
   robustness	
   of	
   the	
   algorithm	
   using	
   synthetic	
   waveforms	
   computed	
   from	
   a	
   defined	
   slip	
  
distribution	
  model,	
  similar to real sources.	
  
	
  
The	
   results	
   reveal	
   the	
   good	
   likeness	
   between	
   the	
   reconstructed	
  model	
   using	
   both	
   primal	
   and	
  
dual	
  LP	
  inversion	
  methods.	
  Both	
  versions	
  converge	
  to	
  the	
  same	
  solution	
  but	
  with	
  very	
  different	
  
computing	
   costs.	
   Using	
   the	
   same	
   simplex	
   inversion	
   routine,	
   the	
   dual	
   method	
   converges	
   after	
  
approximately	
  12	
  min	
  compared	
  with	
  14	
  h	
  for	
  the	
  primal	
  method.	
  The model reconstructed by	
  the	
  
NNLS algorithm	
  differs significantly from the synthetic origin model. 
	
  
The	
  method	
  presented	
  herein	
  can	
  be	
  generalised	
  to	
  jointly	
  utilise	
  other	
  data	
  types	
  (geodetic	
  and	
  
teleseismic	
  waveforms).	
  The	
  results	
  obtained	
  in	
  this	
  study	
  encourage	
  us	
  to	
  apply	
  the	
  proposed	
  
algorithm	
  to	
  real	
  seismic	
  and	
  geodetic	
  data,	
  which	
  is	
  the	
  next	
  step.	
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