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SUMMARY: 
A tuned viscous mass damper (TVMD) using a ball screw mechanism as an apparent mass amplifier has been 
developed. This device can provide an apparent mass that is large enough to enable effective seismic control. 
For a TVMD seismic control system, various design methods based on numerical optimization and spectrum 
modal analysis have been presented in previous studies. However, these methods require complex-valued 
eigenvalue problem analysis because multi-degree-of-freedom (MDOF) systems incorporated with TVMDs are 
nonproportionally damped. 
Because practicing structural designers are often unfamiliar with complex-valued eigenvalue analysis and 
numerical optimization, a simpler design method based on real-valued eigenvalue problem analysis is desirable 
for a practical structural design. 
This paper proposes such a simple design method for MDOF TVMD seismic control systems. A design example 
illustrates that the present method approximates the seismic response of such systems well. 
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1. INTRODUCTION 
 
Saito et al. (2008) developed a seismic control system by connecting a soft spring to a rotary damping 
tube with inertial mass (Fig. 1.1). This system is called the tuned viscous mass damper (TVMD) 
system (Ikago, Saito, and Inoue 2012). The basic concept of TVMDs is the same as that of a tuned 
mass damper (TMD) or a dynamic vibration absorber. Furthermore, its optimal design is obtained 
using fixed points (Den Hartog 1956) on the resonance curve of a single-degree-of-freedom (SDOF) 
system incorporated with a TVMD.  
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Figure 1.1. Rotary Damping Tube with Inertial Mass 
 

It is known that TMDs for buildings are effective against wind-induced vibrations (McNamara 1979). 
However, a statistical study on TMD systems with a secondary mass ratio of less than 0.02 showed 
that it is not necessarily effective against earthquake-induced vibrations (Kaynia, Veneziano, and 
Biggs 1981).  



Hence, a secondary mass that is larger than the effective mass of the primary structure by several 
percent is required to achieve effective reduction in seismic vibrations. Installing such a large mass in 
a building is impractical. Nevertheless, a large apparent mass can be easily obtained by a mass 
amplifying mechanism using a ball screw and a cylindrical flywheel with a small actual mass in the 
TVMD system (Ikago et al. 2011a). 
 
For a multi-degree-of-freedom (MDOF) TVMD seismic control system, design methods based on 
numerical optimization have already been presented (Ikago et al. 2011a, b). However, simpler 
practical design methods have not yet been proposed. 
 
At the preliminary design stage, it is essential for structural designers to understand the seismic 
response characteristics of a structure in terms of modal responses. Although complex-valued 
eigenvalue problem analysis is necessary because seismic control systems with TVMDs are 
nonproportionally damped, complex modes are not commonly used in practice. Instead, undamped 
real modes are used. 
 
In this study, a design example is employed to illustrate a simple design method without the need for 
complex-valued eigenvalue problem analysis and numerical optimization. 
 
 
2. ANALYSIS MODEL 
 
Figures 2.1. and 2.2. show the TVMD analytical model and a MDOF structure incorporated with 
TVMDs, respectively. ,

i i
m k  and 

i
c  are the mass, stiffness, and damping coefficients of the i th 

story, and ,
ri bi
m k  and 

di
c  represent the secondary apparent mass, supporting spring stiffness, and 

damping coefficient of the i th story incorporated with TVMDs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1. TVMD model              Figure 2.2. Analytical model 

 
When TVMDs are incorporated into a primary structure subjected to seismic ground motion, a 
component of the interstory motion that is resonant with the secondary vibration system results in 
amplified motion and substantial energy dissipation in dashpots. 
 
In this study, we use a 10-story benchmark structure S45 model provided in the report on the research 
and development in the U.S.-Japan cooperative structural testing research program on smart structural 
systems (BRI and BCJ, 2001) as a seismic control design example. The characteristics of the 
benchmark structure are listed in Tables 2.1. and 2.2. 
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An equivalent SDOF structure incorporated with an equivalent TVMD system to estimate modal 
responses and its analytical model are shown in Fig. 2.3.  
 
Table 2.1. Specifications of the analytical model       Table 2.2. Undamped fundamental period 
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Figure 2.3. Equivalent SDOF structure incorporated with a TVMD 
 
In Fig. 2.3., ,

r r
M C , and 

r
K  are the generalized mass, damping coefficient, and stiffness coefficient 

for the r th mode of the primary structure, respectively. ,
r d r d
M C , and 

r d
K are the generalized mass, 

damping coefficient, and stiffness coefficient for the r th mode of the secondary system, respectively. 
The ratios of the generalized mass and frequency of the secondary to the primary systems are 
represented by m  and b , respectively. 

d
z  is the ratio of the damping coefficient and critical 

damping coefficient of the secondary system. 
 
 
3. EQUATIONS OF MOTION 
 
3.1. Equations of Motion for the Uncontrolled Primary System 
 
The equations of motion for the uncontrolled primary structure are as follows: 
 

 0p p p p p p p
x+ + =-M C K M 1  x x x ,  (3.1) 

 
where 

1 2
{ , , , }T

p n
x x x= x  is the displacement vector of the primary system relative to the ground, 

{1,1,1, ,1}T=1  is the influence coefficient vector, 
p
C is the inherent damping matrix for the 

primary structure, and superscript T denotes matrix transpose. 
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story primary structure 
mass [t] stiffness[kN/m]height[m]

10 399 152790 4
9 399 242600 4
8 399 316920 4
7 399 380260 4
6 399 434360 4
5 399 480140 4
4 399 518110 4
3 399 548620 4
2 399 571920 4
1 399 588180 4

Mode 1st 2nd 3rd
period(s) 1.20 0.47 0.29

angular frequency 5.23 13.5 21.5
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 If we assume that p
C  is proportional to the stiffness matrix and the inherent damping ratio for the 

1st mode of the primary structure 1x  equals 0.02, then p
C  is given by 
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= =C K K , (3.3) 

 

where 1 p
w  is the lowest fundamental angular frequency of the undamped primary structure.  

 
3.2 Equations of Motion for the MDOF Seismic Control System Incorporated with TVMDs 
 
The equations of motion of a damped n -DOF structure incorporated with one TVMD in each story, 
i.e., n  TVMDs in the entire structure (Fig. 2.2.), are described as follows: 
 

 
0
x+ + = -M C K Mr  x x x ,  (3.4) 

 
where x  is a 2n -dimensional column vector consisting of an n -dimensional displacement vector 
of the primary system relative to the ground and an n -dimensional deformation vector of each 
damper in each story. In this study, 10n =  and  
 

  1 2 2
{ }T T
p n n n
x x x+ += , , , ,x x , (3.5) 

 

where n i di
x x+ =  is the displacement of the apparent mass and viscous element of the TVMD 

installed in the i th story. 
 
The lower half of the influence coefficient vector r  is the n -dimensional zero vector, whereas its 
upper half is the n -dimensional unit vector. This is because the TVMDs are not activated by ground 
motion but by the relative displacement in each story:  
 
 {1 1 1 0 0 0}T= , , , , , , ,r   . (3.6) 
 
, ,M C and K  denote the following 2n -dimensional mass, damping, and stiffness matrices, 

respectively.  
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where  
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4. EIGENVALUE PROBLEM ANALYSES 
 
4.1 Eigenvalue problem analysis of the undamped primary structure 
 
The characteristic equation derived from the eigenvalue problem for the undamped primary structure 
is 

 0
p p p
-W =K M . (4.1) 

 
Let r p

W  and r p
f  denote the r th eigenvalue and eigenvector derived from Eq.(4.1) respectively. 

Then, the r th undamped fundamental angular frequency r p
w  that equals the square root of the r th 

eigenvalue is given by the following: 
 

 
r p r p
w = W . (4.2) 

 
4.2. Eigenvalue problem analysis of the controlled structure 
 
Because the MDOF seismic control system with TVMDs is nonproportionally damped, it is 
intrinsically required to conduct complex-valued eigenvalue problem analysis to obtain its exact 
eigenvalues and damping ratios. To this end, Eq. (3.4) is converted into the following 4n  first-order 
matrix equation:  
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g
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The eigenvalue problem in Eq. (4.3) can be expressed as follows:  
 

 ˆ ˆ
i C i C i C

l= -B Af f . (4.5) 
 
If we assume that this seismic control system is underdamped, the eigenvalues and eigenvectors given 
by Eq. (4.5) are 2n  complex conjugate pairs. 
 

Here, we express the r th pairs of eigenvalues and eigenvectors as 2 1 2r C r C
l l- ,  and 2 1 2

ˆ ˆ
r C r C- ,f f , 

respectively.  

The r th fundamental angular frequency 
r C
w  and the corresponding damping ratio 

r C
x  can be 

obtained as follows:  
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w l l-=| |=| | , 22 1
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4.3. Approximated Eigenvalue Problem Analysis of the MDOF TVMD System Using the 
Undamped System 
 
In Eq. (3.4), the effect of the damping matrix is neglected to avoid complex-valued eigenvalue 
problem analysis. Then, the characteristic equation of the MDOF TVMD system reduces to 
 

 0-W =K M . (4.7) 

 

Let 
r
W  and 

r R
f  denote the r th eigenvalue and eigenvector derived from Eq.(4.7), respectively. 

The r th approximated fundamental angular frequency 
r R
w  equals the square root of the r th 

eigenvalue: 
 

 
r R r
w = W . (4.8) 

 

It is well known that a good approximation of the r th modal damping ratio 
r R
x  is given by  
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if the vibration system is slightly damped. 
 
5. ANALYSIS EXAMPLE 
 
The damping effect of the TVMD system is closely related to the effective modal mass ratio. The 
generalized modal mass for the undamped primary structure is  
 

 2

1 1 1 1 ,
1

n
T

p p p j p j
j

M m f
=

= =åMf f . (5.1) 

 
Because the TVMD system is activated by the interstory displacements of the primary structure, the 
effective modal mass of the additional vibration system tuned to the first mode is expressed as follows: 
 

 2 2
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2
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M m mf f f -
=
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Thus, the effective mass ratio is given by 1 1 1

/
d
M Mm = . In this study, an additional mass ratio of 0.1 

is specified, and the distribution of the additional masses is set such that it is proportional to that of 
story stiffness: 
 

 ,d i i
m ka= . (5.3) 

 
Substituting Eq. (5.3) into Eq. (5.2) yields 
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Thus, 
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For the equivalent SDOF system incorporated with TVMDs, the optimal angular frequency opt

r
w  and 

damping ratio opt

d
z  for the specified mass ratio m  are obtained by the fixed point method (Saito et al. 

2008): 
 

 ( )2, , , ,
, 2opt opt opt

b i d d i d i d d d i
k m c mw z w= = , (5.6) 

 
where 
 

 
1

3(1 1 4 )1 1 4
,

2 4
opt opt
d p d

mm
w w z

m

- -- -
= ⋅ = . (5.7) 

 
The calculated values are shown in Table 5.1. 
 
Although each secondary mass is larger than each primary mass in the corresponding story, as shown 
in Table 5.1., the actual masses required are reduced to several thousandths by the mass amplifying 
mechanism. 
 
Here, we compare the fundamental angular frequencies, damping ratios, and participation vectors 
obtained by the following three methods: 
 
Method A. The eigenvalue problem analysis of the undamped primary system. (the real-valued 

analysis shown in section 4.1.) 
Method B. The complex-valued eigenvalue problem analysis of the TVMD seismic control system. 

(the complex-valued analysis shown in section 4.2.) 
Method C. The eigenvalue problem analysis of the TVMD seismic control system ignoring the 

damping matrix. (the real-valued analysis shown in section 4.3) 
 
Table 5.2. compares the fundamental angular frequencies and damping ratios obtained by the three 
methods. The 1st mode of the uncontrolled primary system is split into 11 modes by adding the 
10-DOF secondary system. The fundamental angular frequencies of the 1st to 11th modes of the 
TVMD system obtained by Methods B and C are close to each other. They are also close to the 1st 
fundamental angular frequency of the uncontrolled primary system obtained by Method A. The 
damping ratios of the 2nd and 3rd modes of the uncontrolled primary system are almost unchanged by 
the addition of TVMDs, whereas those of the 1st to 11th modes of the TVMD system are substantially 
increased. This means that the TVMD seismic control system can increase the damping ratio of the 
specified mode, and it almost never changes those of the other modes. 
 
The damping ratios of the 2nd to 10th conjugate pair modes are almost identical to the local damping 
ratio of the device 3(1 1 4 ) / 4 0.206opt

d
z m= - - = . This is because only the secondary masses, 

as observed in Fig. 5.1(b), are activated in these modes and are independent of the primary responses. 
As shown in Table 5.2., the modal damping ratios obtained from Eq. (4.9) (Method C) correspond 
well with those obtained from complex-valued eigenvalue problem analysis (Method B). 
Figure 5.1. compares the modal participation vectors obtained by Methods A, B, and C. The modal 
participation vectors obtained by Method C give a good approximation of the real parts of the complex 
valued modal participation vectors obtained by Method B. 
 
Although complex-valued eigenvalue problem analysis (Method B) is intrinsically inevitable in the 
spectrum modal analysis of the TVMD seismic control system, the above comparisons of the three 
methods suggest that Method C may also give a good seismic response estimate. 
 
 
 



Table 5.1. Specifications of the TVMD system 

story ,d i
m [t] ,b i

k  [kN/m] ,d i
c [kNs/m]

10 558 19407 1353
9 885 30814 2148
8 1157 40254 2805
7 1388 48299 3366
6 1585 55171 3845
5 1752 60986 4250
4 1891 65809 4586
3 2002 69684 4857
2 2087 72643 5063
1 2147 74709 5207

 
Table 5.2. Comparison of angular frequencies and damping ratios 

mode 

Uncontrolled 
Method A. mode

TVMD system
Method B.

TVMD system 
Method C. 

angular 
frequency 

damping 
 ratio 

angular 
frequency

damping ratio angular 
frequency 

damping 
ratio

1 5.23 0.02 

1 4.79 0.122 4.65 0.121
2 5.50 0.218 5.50 0.218
3 5.54 0.220 5.54 0.220
4 5.55 0.220 5.55 0.220
5 5.55 0.220 5.55 0.220
6 5.55 0.221 5.55 0.221
7 5.55 0.221 5.55 0.221
8 5.55 0.221 5.55 0.221
9 5.55 0.221 5.55 0.221
10 5.55 0.221 5.56 0.221
11 6.44 0.114 6.64 0.114

2 13.5 0.052 12 14.5 0.049 14.5 0.049
3 21.5 0.082 13 23.0 0.077 23.0 0.077

 
Here, we propose the following approximation for the maximum interstory drifts { }

i
d  and damper 

forces ,
{ }
d i
f : 
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 { } { }
222

, , , ,
1, 1 2

( ; ) ( ; )
n
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k n k n

f k S Sw x n f w x n f
= + = +

= +å å , (5.9) 

 
where kn  is the modal participation factor for the k th mode. ,k b i

f  is the displacement of the 
damper supporting spring in the i th story and is given by subtracting the damper displacement k i nf +  
from the interstory drift: 
 

 , 1k b i k i k i k i n
f f f f- += - - . (5.10) 

 
Obviously, Eqs. (5.8) and (5.9) are based on the square root of the sum of the squares method. 
However, the 2nd to n th modal component are eliminated because they are insignificant. 
 
Here, we compare the seismic response estimation methods by using ten synthesized ground motions. 
The acceleration response spectra of the ground motions are compatible with the target spectrum 
specified by the building standard law of Japan, whose magnitudes are doubled considering the 
amplification by the surface ground in this study. The ground motions have random phase angles that 



are different from each other. The acceleration response spectra of the ground motions are shown in 
Fig. 5.2. 
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Figure 5.1. Comparison of participation mode vectors 
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Figure 5.2. Response spectra of the input ground motion 
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Figure 5.3. Comparison of seismic response estimation 
 

Figure 5.3. compares the average maximum responses obtained from the time history analyses using 
ten ground motions based on Newmark’s b method, the complex complete quadratic combination 



method (Yang and Sarkani 1990), the complete quadratic combination (CQC) method (Wilson, Der 
Kiureghian, and Bayo 1981), and the proposed method. As shown in Fig. 5.3., the proposed method 
gives a good approximation in practical terms, whereas the CQC method underestimates the response. 
Although further investigation is still needed with respect to various secondary mass distribution 
patterns, the basic modal response characteristics of an MDOF system incorporated with TVMDs are 
elucidated with the proposed method. This simple seismic response estimation method is based on 
real-valued eigenvalue problem analysis and is suitable for practical structural design. 
 
 
6. CONCLUSIONS 
 
In this paper, it is shown that a TVMD seismic control system can specify the modal damping ratio of 
the tuning mode, and the eigenvalues and damping ratios of the other modes are almost never changed 
from the uncontrolled system. Therefore, seismic control design using TVMDs can be conducted on 
the basis of spectrum modal analysis. The approximate eigenvalues, modal damping ratios, and mode 
vectors are obtained from real-valued eigenvalue problem analysis, with which structural designers are 
familiar, by ignoring the damping matrix of the TVMD seismic control system. An analysis example 
illustrated that the proposed seismic response estimation method approximated the seismic response 
quite well in practical terms. 
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