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SUMMARY:

A trilinear bending moment — curvature relationsiigs implemented into computer program OpenSeesliriéar

response history analysis was conducted on 13reiftebuildings that were 10 to 50 stories high vétlpractical
range of axial compression force and vertical micément. Both uniform hazard spectrum (UHS) andtitmnal

mean spectrum (CMS) were considered as targetrspedor selecting and scaling ground motions. Tésuits
from numerous nonlinear response history analyseth® 13 buildings were used to develop simplifiedcedures
to estimate seismic demands on high-rise conciegarswall buildings using response spectrum argl{REA)

including: the appropriate effective stiffness eduo estimate mean roof displacement, an enveldpeerstory
drifts over the building height, curvature demaatithe base and near mid-height, and base sheax. for

Keywords: Concrete shear walls, effective stiffnggerstory drift, curvature, base shear force.

1. INTRODUCTION

Concrete shear walls are extensively used as theiseforce resisting system on the west coastatiN
America. In order to design such buildings, estésateed to be made of the demands on the shear wall
due to the design level earthquakes. While nontinegponse history analysis is sometimes usedein th
design of high-rise shear wall buildings in the UiBear dynamic - response spectrum - analysis is
normally used to design such buildings in Canada.

In the current study, numerous nonlinear respoisteriy analyses were done on a variety of buildiings
order to develop simplified procedures to estimavalinear demands on cantilever shear walls from
linear (response spectrum) analysis. This includesximum wall displacement at the roof level; the
complete interstory drift envelope; curvature dedsaat the base of cantilever walls and near migHtei
where higher modes cause large bending momentsharahvelope of shear force demands.

2. EXAMPLE SHEAR WALL BUILDINGS

Thirteen different concrete shear wall buildingsyiag in height from 10 to 50 stories were included
this study (see Table 1). All buildings had theashgalls arranged in a central core with openingswo
opposite sides. Thus the shear walls were coupsdi$ wm one direction and cantilever walls in thbey
direction. The results are presented here for éméilever wall direction only. All buildings witthe same
number of stories have the same concrete wall gepnad same mass per floor and thus same
fundamental periodl; based on the uncracked flexural rigidiBl,, The buildings had different
percentages of vertical reinforcement and diffedemels of axial compression in the walls due te th
different placement of the gravity-load columnsd @inus had different bending moment capacitiebat t



base. The ratif, of elastic bending moment demand (calculated uBiggto nominal bending moment
capacity ranged from 1.4 to 4.4.

The vertical (longitudinal) wall reinforcement wassigned according to the requirements of the Ganad
Concrete Code (CSA A23.3-04). The amount of vdrtieimforcement in the walls was kept constant over
the plastic hinge zone (from the base to a heigbtieto 1.5 times the wall length) and then de@éas
approximately linearly over the building height.eTminimum reinforcement requirements controlled the
amount of reinforcement in upper levels. Cantilevalls in a core have a “C” or “I” shaped crosstsst

with coupled walls at each end being similar tarifjes.”

Table 1. Properties of Shear Wall Buildings Included in Stedy.

No. Stories 10 20 30 40 50
L (m)" 5.50 7.50 9.00 10.75 13.75
L (m) 2 6.00 8.00 9.00 11.50 13.50
Ly (M)? 0.60 0.90 1.20 1.40 1.60
t; (m)* 0.45 0.55 0.70 0.80 0.85
A (M)° 8.2 14.6 21.7 31.2 42.2
Iy (m"° 39.4 126.2 261.4 545.8 1189.5
f. (MPa) 30 35 40 45 55
Eclg (KNnT) 9.71x1¢ 3.36x10 7.44x10 1.65x10° 3.78x10°
m (kg)’ 825,700 927,625 999,000 1,284,400 1,947,000
T, (sf 1.0 2.0 3.0 4.0 5.0
P/i;Ay (%)’ 5.9 8.7 10.1 6.1 6.2 12.7 6.2
pr (%)'° 40| 25| 1.2 0.60 33 1.2 05 o0 0.52 35 10 DBS5
pr (%) 1.9 | 13| 0.8 0.60 1.9 07 05 05 0.52 1.8 05 D.BS5
(%)™ 1.2 0.25 0.25 0.25 0.25 0.25
R " 1.7 | 26| 4.2 4.0 1.4 24 31 4B 4.4 14 21 P41 4

Icantilever wall length’sum of flange widths’sum of web widths’thickness of flangewall total cross sectional
area,’gross moment of inertidmass per floorfundamental period correspondingEgd,, ®axial compression stress
at base!%lange reinforcement ratio at bas&lange reinforcement ratio at mid-heightweb reinforcement ratio,

Y¥atio of elastic bending moment demand (calculasgdgE; lg) to nominal flexural strength.

3. ANALYTICAL MODEL FOR CONCRETE CANTILEVER SHEAR WALLS

Nonlinear response history analysis was performsitigua specially developed hysteretic bending
moment — curvature relationship implemented intmgoter program OpenSees (OpenSees 2008). The
hysteretic model features a trilinear backbone ewlnd incorporates stiffness degradation and ralksidu
curvatures similar to what was observed in largdestests of concrete shear walls (Adebar et @072
Thomsen and Wallace, 1995). The trilinear backbmmee developed by Adebar and Ibrahim (2002) was
extended into a hysteretic bending moment - cureatelationship (see Fig. 1).
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Figure 1. Trilinear bending moment — curvature relationglsgd for nonlinear response history analysis of
cantilever walls.

The trilinear hysteretic model can be fully defineyg the knowing the following parameterSly =
uncracked flexural rigidityM., = bending moment at crack openind, = flexural bending moment
capacity,¢, = yield curvature an@ = ratio of post-yield stiffness to initial stiffas, andVl,c = bending
moment at crack closing. Further details and vébdeof the trilinear bending moment — curvaturedelo
for cantilever shear walls is presented by Dezl{@a1?2).

The parameters that define the trilinear hysteratidel were computed at each level consideringxied
compression force and percentage of longitudinafoecement. A force element was defined at each
floor level to model the spread of plasticity otlee height. The base of the wall was assumed txee

and shear deformations were assumed to be zerthdoanalysis presented here; however additional
studies were done to examine the influence of tleasthe building response (Dezhdar, 2012). Rayleigh
damping was assumed with mass proportional an@lisitiffness matrixes. A damping ratio of 3% was
assigned for the first and third modes.

4. GROUND MOTIONS

As ground motions plays such an important rolehi esults that are obtained from nonlinear regpons
history analysis, an extensive study was done \tesiigate different methods for selecting and sgali
ground motions. Traditionally, ground motions aetested based on the magnitude and distance of a
potential earthquake happening at the site asasedburce mechanism and site soil condition. Thergt
motions are then scaled to the uniform hazard spec{UHS). Recently, Baker and Cornell (2006)
introduced conditional mean spectrum (CMS) as tarrative target spectrum. The CMS accounts for the
correlation between spectral accelerations at uarferiods. CMS is a more realistic scenario thels U
since the UHS is an envelope of spectral accetersitat all periods.

Eighty ground motions selected from the PEER Negrnhésation Attenuation (NGA) strong motion
database (PEER 2010) were scaled to the UHS. Eobuhdings with fundamental periods of 1.0, 2.0,
3.0, 4.0, and 5.0 seconds, the number of grountcbn®wvere reduced to 80, 62, 53, 40, and 35 saltleat
mean spectrum matches the UHS over a wide rangeradds. These ground motions are referred to as



SOR for “scaled over range.” Forty ground motioreyevspectrum matched to the UHS using computer
program SYNTH (Naumoski 2001) and are referredstSIs.

For scaling to the CMS, nine periods were consiier® conditioning periods for 10, 30, and 50 story
shear wallsT, =0.15sT; =1.0s, 1.5, = 1.5 s and 21} = 2.0 s for the 10 story wall$3 = 0.15 s,T, =
0.50 s,T; = 3.0 s and 5.0 s for the 30 story walls, dad- 0.28 s,T, = 0.80 s and; = 5.0 s for the 50
story walls. These are modal periods with a totassnequal to 90% of the total mass as well as grio
representing the first mode period elongation @ueadnlinear behavior. Maximum value for conditiagin
period is limited to 5.0 seconds since the singificorrelation model (Baker and Cornell 2006) was
employed to compute the CMS. The Jayaram et afll(R@pproach was used to select forty ground
motions for each conditioning period. Figure 2 sk@m example of the target spectrum for 30 stoliswa
with T; = 3.0 s.

12

=

o
®

o
o

o
IS

Spectral acceleration (g)

1.67T;=50s

o
N

Period (s)

Figure 2. Comparison of UHS with mean spectrum for SOR aktE@omputed at different conditioning periods.

5. ROOF DISPLACEMENT DEMANDS

Table 2 compares mean roof displacement demandndetal from nonlinear response history analysis
using different sets of ground motions. The CMSedope associated with the largest responses are
denoted as CMS-E. The mean roof displacements iagsdavith the CMS-E were found to be between
90 and 100% of the mean roof displacement detednirgng the SM ground motions. It was also
observed that mean roof displacements from SOReteeen 90 and 110% of the mean results from SM

ground motions.

Mean roof displacement from nonlinear responsehjisinalysis using SOR ground motions were used to
determine effective stiffness of concrete shearlswalppropriate effective stiffness values were
determined such that the roof displacement frormparese spectrum analysis (RSA) matches the mean
roof displacement from the time history analysisst&fness reduction factor of 1.0 was assumedas t
first guess and it was reduced iteratively un#@ best match for roof displacement was achieved.



Table 2. Mean roof displacement demand using different seggound motions.

M ean Roof displacement (m)
CMS
Wall Ry SM SOR CMSE 2T, 1.5T; T
1.7 0.11¢ 0.117 0.11¢ 0.08¢ 0.111 0.114
2.€ 0.13¢ 0.13¢ 0.12¢ 0.09: 0.126 0.12¢
10 story 4.2 0.1€0 0.18: 0.16¢ 0.13¢ 0.169 0.13¢
1.4 0.437 0.43¢ 0.431 - 0.331 0.431
2.4 0.561 0.52¢ 0.520 - 0.457 0.520
3.1 0.651 0.56¢ 0.58¢ - 0.531 0.586
30 story 4.2 0.641 0.59: 0.59: - 0.51¢ 0.592
1.4 0.710 0.74¢ 0.65¢ - - 0.656
2.1 0.810 0.81¢ 0.771 - - 0.771
2.4 0.801 0.820 0.731 - - 0.731
50 story 4.1 0.6<0 0.75¢ 0.63¢ - - 0.635

The effective flexural stiffness of a concrete she&all is normally thought to increase with the deof
axial compression applied to the wall because cesgion increases the bending moment to cause
flexural cracking. The results of the current stulnlgicate the most important parameter that infbesn
effective flexural stiffness is the ratio of elasbending moment demand to strength of wall, ard th
generally the effective stiffness of concrete waltsnot reduce below about 50% of the stiffnesarof
uncracked wall. Figure 3 shows the variation offretss reduction factors for the thirteen different
buildings as a function d®., which is defined as the ratio of elastic bendimgment demand (at base)
calculated usingel, to the wall nominal flexural strengti,. Note that the elastic demand to capacity
ratios determined usirgl. are smaller than the same ratios determined Ey{(gee Table 3).

The axial compression stress ratio was found tee hrauch less influence on the effective stiffness of
concrete walls than previously thought, and forlsvadith a constant ratio of elastic demand to gjteR,

the wall with the highest axial compression streg® actually has the lowest effective stiffnessduse
that wall has proportionally less vertical reinfemeent and thus less hysteretic damping. Furthexlslet
are given by Dezhdar and Adebar (2010).
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Figure 3. Variation of effective stiffness of cantilever Ugahs a function of the rati&, of elastic bending moment
demand at wall base to nominal bending moment égpac



Table 3. Elastic bending moment demand to nominal capaatigs corresponding to gross flexural stiffneRg (
and effective stiffnessR).

No. Stories 10 20 30 4Q 50
P/t Aq (%) 5.9 8.7 10.1 6.1 6.7 12.7 6.2
Ry 17| 26| 42| 40, 14 24 31 43 44 14 21 p41 A
R 17| 23| 33| 27/ 13 24 28 31 36 13 18 207 B.
ElJ/El, 1.00| 0.82| 0.50 050 0.90 0.65 0.p0 0J50 Q.65 0.000| 0.70| 0.8Q

6. INTERSTORY DRIFT RATIOS

Interstory drifts of shear walls strongly influendeformation demands on gravity load columns coteaec
to shear walls. For example, larger interstorytsirfause larger rotational demands on slab-column
connections and this increases the likelihood lireching shear failure of slabs.

Time history results of interstory drift ratio dtet roof and at the mid-height showed that thesevaik
correlated to the roof displacement demand. Thahesroof and mid-height interstory drift demarads
the instant of maximum roof displacement are vergilar to the corresponding maximum values.
Consequently, roof and mid-height interstory diliéimands can be expressed as a function of gloiftal dr
ratio & /h,, which is the ratio of roof displacement demandhe wall height. It was observed that
interstory drift at the roof and at the mid-heightelatively independent of the rafibof elastic bending
moment demand at base to nominal capacity.

Figure 4(a) compares the interstory drift profileesm nonlinear response history analysis with the
proposed envelopes for the 30 story wall vijihr 3.1. RSA can be used to make a good estimatesah
roof displacement, but it underestimates interstiifgs at lower floors. It is interesting to ndteat p and
W+o interstory drifts from SOR and CMS-E ground mosiomere found to be very similar. Figure 4(b)
presents the proposed simplified envelope of itdeysdrift demands over the height. To estimate the
mean () interstory drifts, the parametdysAn,, A shall be taken equal to 1.6, 1.3, 0.7, while tovese

the mean plus one standard deviationd(piiterstory drifts, these same parameters becogel B, 1.0.
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Figure 4. (a) Envelopes of interstory drifts for 30-storylhaith R, = 3.1, and (b) proposed general interstory drift
envelopes.



7. CURVATURE DEMANDS

Wall curvature demands influence the maximum cosgiom strain demands in concrete and maximum
tension strain demands in vertical reinforcemehuslthe displacement capacity of a concrete shathr w
is directly linked to the maximum curvatures thegult from wall displacements. Cantilever sheadswal
have traditionally been design for yielding onlytla¢ base due primarily to first mode bending masien
however many studies have shown that large bendimments also occur near mid-height due to higher
mode (primarily second mode) bending moments.

Figure 5 presents the mean curvature demand eregefop the cantilever walls in the four differer@-5
story buildings. The base curvature demand inceeagmificantly as the flexural strength of the wal
reduced. The maximum mid-height curvature is lesssisive to the flexural strength of the walls. For
example, the maximum mid-height curvature for Sfstvalls withR. equal to 1.8 and 3.7 are identical
(0.133 rad/km foR. = 1.8 versus 0.132 rad/km fBg = 3.7). At the location that the maximum curvasure
occur, the nominal flexural strength of tRe= 1.8 wall is 1.5 times the strength of RRe= 3.7 wall.

Table 4 presents the mean and mean plus one stadeation of mid-height curvature demands from
nonlinear response history analysis. The maximunatian of strain across the wall at mid-height,ieth

is equal to the product of the curvature timeswhé length, varies from 0.0014 to 0.0023 (averagiie

of 0.0019) for the mean curvature demands and @825 to 0.0042 (average of 0.0034) for the mean
plus one standard deviation demands. These cuevaemands are all very small and thus there is no
need to try and prevent flexural yielding of caaxtér shear walls near mid-height by trying to iasethe
flexural capacity of the walls as has been propdgesbme researchers.

Flexural bending moment capacity M,
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Figure5. Variation of mean curvature demand envelopesdor flifferent 50-story cantilever walls with difart
ratiosR, of elastic bending moment demand (determined usiggo nominal bending moment capacity. Also
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Table 4. Mean (i) and mean plus one standard deviatiow)(pesults for mid-height curvature times wall lemgt

¢mic-|w-
No. Stories 10 20 30 40 50
R 17| 23| 3.3 27 13 2p 23 31 36 13 [1.8 |2.07 |3Average
Smiglw | M (X 1@) 1.8| 20| 21 23 14 2p 19 211 18 15 1.8 [1.83 |2 19
p+to (X 103) 35| 37| 37 42 27 3P 32 37 33 27 P9 |[250|4 34

8. SHEAR FORCE DEMANDS

Accurately estimating shear force demand is ofipagr importance in the seismic design of cantlev
shear walls in order to ensure these structurdshaile a ductile response. Due to the influenckigitiier
modes, the shear force demands from nonlinear mespbistory analysis are considerably larger than
those from linear analysis. The difference betwstezar force demands from the two approaches is ofte
called the dynamic shear amplification.

Figure 6 compares mean shear force profiles farethwalls using the SOR ground motions as well as
ground motions matched and scaled to the CMS #ardiit conditioning periods. For the 10 story wall,
the CMS afl, and 1.9, defines the envelope at the base and mid-heigpectively. Mean shear forces
from CMS ground motions are 14 and 13% lower thasé from the SOR ground motions at the base
and mid-height, respectively. Also, changing candihg period fromT, to 1.5, did not change the
mean shear force envelope, which indicates thaeltwegation of higher mode has no effect on shear
force distribution over the height for this sheadiw

For the 50-story wall, the CMS at2defines the shear force envelope over the elavatioge from 70 to
90 m. The mean shear force from this conditioniagagal is very similar to those determined using SOR
ground motion, which indicates that high mid-heighear forces for the 50 story wall with= 2.0 are
derived by the elongation of the third mode peribdhould be mentioned that the mean shear foma f
T; defines the shear force envelope at the base Q6RIS), which is approximately 9% lower than that
using the SOR ground motions.
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Figure 6. Mean shear force envelopes from different suifegaund motions for 10 and 50 story buildings.

In design, the base shear force determined ussmpnse spectrum analysis is reduced by the saioe rat
that the elastic bending moments are reduced touatdor flexural ductility of the structure. Thaear
amplification is the amount these design shearefrgeduced from the elastic analysis) need to be



increased again. In order to establish a simpleeinfmit shear amplification, the mean base sheaefor

from nonlinear response history analysis was coetpavith the base shear force determined from
response spectrum analysis for fixed-base cantiladls. Elastic modes 1 to 4 and an effectivefraifs

of 0.5Ely were used to compute elastic bending moments hedrsforces. The modal forces were
combined using the CQC method.

Figure 7 summarizes the shear amplification facteguired for the 13 different buildings, which
generally vary from 1.0 to 2.0 as the ratio of #abending moment at the base corresponding t&I0.5
to wall flexural capacityM, increases. For the 10-story walls, the shear dicgtion factor varies from
1.3 to 1.7, while the largest shear amplificatiaatér for the 20, 30, and 50-story walls is 1.950Ashown
in Figure 7 is the proposed equation for calcutatine shear amplification factors for cantileveeah
walls based on elastic shear forces and bendingemtsnadetermined using &g,
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Figure 7. Shear amplification factor — defined as amounstédashear forces reduced Byneed to be increased
based on nonlinear analysis, whe&s ratio of elastic bending moment demand to nairfiexural capacity and all
elastic forces determined from RSA usingElH

9. CONCLUSIONS

Nonlinear response history analysis using 13 diffebuildings and many different ground motions was
undertaken in order to develop simplified modelsghedicting seismic demands on cantilever shedlr wa
buildings from linear dynamic (response spectrun@lysis. The main conclusions from this study ét}:
the effective flexural rigidity of cantilever sheaalls that should be used to obtain an accurdimate of
maximum roof displacement reduces from 1.0 to aBdus the ratio of elastic bending moment demand
to flexural capacity of the wall increases. (2)ifglified envelope of interstory drifts is proposechich

can be used to estimate seismic deformation den@mngdsavity-load frame members such as rotations in
slab-column connections and curvature demands awvitgdoad columns (Adebar et al., 2012). (3) The
maximum mid-height curvature demands on cantilelerar walls are relatively small and there is no
reason to increase the strength of cantilever shadls to prevent mid-height yielding or to provide
excessive ductility requirements at the wall midghé (4) The shear amplification factor is the amib
that design base shear force — reduced from eksilysis by the same ratio that elastic bendinmemts



are reduced to account for flexural ductility — ciée be increased. This amplification factor wasnio to
be independent of the building height and to hase&imum value of 2.0.
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