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SUMMARY: 
This paper investigates the behavior of seismically isolated buildings with multilayered elastomeric bearings. 
First, a mechanical model for multilayered elastomeric bearings is proposed to account for changes in the 
properties of elastomeric bearings that depend on varying axial loadings. Second, analytical models of 
seismically isolated buildings are generated to simulate the seismic response of isolated buildings. We conduct 
analyses of isolated structures subjected to steady-state harmonic motion in order to establish a general 
understanding of their nonlinear responses. Seismic response analyses are also conducted to demonstrate isolated 
buildings’ behavior under severe earthquake excitations. The results obtained from the analyses using a detailed 
model show that the maximum response acceleration of buildings tends to be limited because their isolators 
buckle. This buckling behavior may cause the isolators to experience unexpected extra displacement, and the 
occurrence of buckling suggests that isolators might be severely damaged. 
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1. INTRODUCTION 
 
Seismic isolation is the most effective technology for protecting structures from the damaging effects 
of earthquakes. It has been used extensively worldwide over the last three decades. The widespread 
use of seismic isolation has necessitated a better understanding of some of the more complex aspects 
of isolation device behavior such as that occurring under large shear deformations or high compressive 
stresses. At large shear deformations, elastomeric bearings exhibit stiffening behavior under low axial 
stress or buckling behavior under high axial stress. With seismic isolation, buildings can get taller and 
slenderer, and the imposed compressive stress variations under earthquake excitation can be 
significant because of rocking behavior. Detailed analytical models that include the influence of 
rocking behavior enable precise estimation of the dynamic response of seismically isolated structures. 
 
This paper investigates the behavior of seismically isolated buildings with multilayered elastomeric 
bearings, especially under rocking vibration caused by earthquake excitation. First, a mechanical 
model for multilayered elastomeric isolation bearings is presented to account for the property changes 
elastomeric bearings undergo depending on their axial loadings. For the purpose of representing the 
interaction between shear and axial forces, we use a mechanical model that includes two sets of axial 
springs, one on the top and the other on the bottom, and a mid-height shear spring, all bound together 
by rigid columns. 
 
Next, we generate analytical models of seismically isolated buildings to simulate the seismic response 
of isolated buildings. Isolated buildings are simplified, then their superstructures are modeled as 1 
degree of freedom systems supported by three mechanical models of elastomeric bearings, including 
the influence of varying vertical loads on horizontal hysteretic behavior. 
 
Then we perform two types of response analysis. The first is steady-state vibration analysis under 



sinusoidal excitation, and the second is transient response analysis under earthquake ground motion. 
We investigate the influence of shear-axial interaction on the behavior of isolators by using detailed 
analytical models of isolated buildings. The results of the analyses show that the maximum restoring 
force of elastomeric bearings and the maximum acceleration response of superstructures are limited 
because of buckling behavior of the isolators. These results give us some important suggestions for the 
safety of seismically isolated structures. 
 
 
2. A MECHANICAL MODEL FOR MULTILAYERED ELASTOMERIC BEARINGS 
 
2.1. Mechanical Model 
 
Figure 2.1 shows a mechanical model for multilayered elastomeric bearings. This model is proposed to 
account for property changes that elastomeric bearings exhibit depending on their loading (Kikuchi et 
al. 2010). Figure 2.2 shows the deformation of the mechanical model under horizontal and vertical 
loads. To represent the interaction between shear and axial forces, the mechanical model includes two 
sets of axial springs, one on the top and the other on the bottom and a mid-height multiple shear spring 
(MSS), all bound together by rigid columns. Each spring in the model is a uniaxial nonlinear spring. 
 

 
 

Figure 2.1. Three-dimensional multi-spring mechanical model. 

 
 

Figure 2.2. Deformation of the mechanical model. 
2.1.1. Shear springs 
The MSS model, originally proposed to simulate the biaxial behavior of a building (Wada and Hirose 



1989), consists of a series of identical shear springs arranged radially (fig. 2.3(a)) to represent the 
isotropic behavior of multilayered elastomeric bearings in the horizontal plane. In this study, a 
nonlinear hysteresis model proposed for lead-rubber bearings (LRBs) (Yamamoto et al. 2009) is 
applied to each shear spring. The hysteresis model can accurately predict the mechanical properties of 
elastomeric bearings into the large strain range (fig. 2.3(b)). 
 

(a)  (b)  
 

Figure 2.3. Multiple shear springs at mid-height of the model 
(a) Diagram of MSS; (b) Shear force-shear strain relationship for the shear springs in the MSS. 

 
2.1.2. Axial springs  
Figure 2.4(a) shows a construction of the series of axial springs at the top and bottom of the 
mechanical model. Each axial spring represents an individual fiber of the bearing’s cross-sectional 
area. Figure 2.4(b) shows the stress-strain relationship for the axial springs (Kikuchi et al. 2010). This 
hysteresis model accounts for the nonlinear vertical behavior of multilayered elastomeric bearings. 
Multilayered elastomeric bearings consist of many rubber layers whose top and bottom surfaces are 
bonded to steel plates to restrict compressive deformation. The deformation constraints provide 
compressive modulus distribution over the cross section of the rubber layers. This compressive 
modulus distribution is considered in the proposed mechanical model (fig. 2.5). The initial 
compression modulus, Einit, of each spring can be calculated from the following equations (Ishii et al. 
2011): 
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where S1 is the shape factor of the rubber layer, G is the shear modulus of rubber, K is the bulk 
modulus of rubber, R is the radius of the rubber, r is the distance of each spring from the center of the 
rubber, and I0 is the modified Bessel function of the first kind of order 0. 

(a)  (b)  
 

Figure 2.4. Multiple axial springs at the top and bottom of the model 
(a) Diagram of multiple axial springs; (b) Axial stress-axial strain relationship for multiple axial springs. 



 
 

Figure 2.5. Distribution of initial compression modulus. 
 
2.2. Hysteresis Loops under Various Vertical Loads 
 
Figure 2.6 shows the results of the analysis of simulated LRB cyclic loading tests using the 
mechanical model. At large shear deformations, the hysteresis loop shows stiffening behavior under 
low axial stress or buckling behavior under high axial stress. These mechanical property changes are 
generally accepted for the nonlinear behavior of elastomeric isolation bearings. 
 

(a)   (b)   (c)  
 

Figure 2.6. Shear force-shear strain hysteresis loops: 
(a) under 1 MPa compressive stress; (b) 20 MPa; (c) 0 to 20 MPa (varies with shear deformation). 

 
 
3. ANALYTICAL MODEL FOR SEISMICALLY ISOLATED BUILDUNGS 
 
In this section, we describe analytical models of seismically isolated buildings. These models are used 
in section 4 to simulate the seismic response of isolated buildings. A seismically isolated building used 
in the modelling is shown in fig. 3.1. The building is modelled as a 1-degree of freedom (DOF) system 
supported by three isolators. Stiffness proportional damping of the superstructure is assumed, with a 
damping ratio of 2% of critical at the fundamental period of the fixed-base structure. Fundamental 
period, T, is estimated as 
 

ܶ ൌ 0.02 ൈ ܪ ൌ 1.2	ሾsሿ (3.1) 
 
where H is the height of the building. When assuming the fundamental mode shape is an inverted 
triangle, equivalent mass Me, equivalent height He and equivalent stiffness Ke are calculated by the 
following equations: 
 

௘ܯ ൌ
ଷ௡ାଷ

ସ௡ାଶ
ܯ ൌ 1537 ൈ 10ଷሾkgሿ (3.2) 

 

௘ܪ ൌ
ଶ௡ାଵ

ଷ௡
ܪ ൌ 41	ሾmሿ (3.3) 

 

௘ܭ ൌ
ସగమெ೐

்మ
ൌ 42.1 ൈ 10ଷ	ሾkN/mሿ (3.4) 

−4 −2 0 2 4

−1000

−500

0

500

1000

Shear Strain

Sh
ea

r 
fo

rc
e 

[k
N

]

−4 −2 0 2 4

−1000

−500

0

500

1000

Shear Strain

Sh
ea

r 
fo

rc
e 

[k
N

]

−4 −2 0 2 4

−1000

−500

0

500

1000

Shear Strain

Sh
ea

r 
fo

rc
e 

[k
N

]

High Low
axial stress axial stress



where M is the total mass of the building and n is the number of stories. The dynamic properties of the 
building and dimensions of the isolators are shown in Table 3.1 and Table 3.2, respectively. The 
average compressive pressure on each isolator is 10 MPa. 
 

 
 

Figure 3.1. Twenty-story reinforced-concrete frame building supported by nine isolators 
and analytical model. 

 
Table 3.1. Dynamic properties of the building. 

 Fixed-base Isolated 
Natural period [s] 1.20 3.38 (equivalent horizontal stiffness at 100% shear strain) 
Damping factor 2% (building) 2% (building), 26.5% (isolators) 

 
Table 3.2. Dimensions of LRBs used in analytical models. 

Diameter 
[mm] 

Lead plug 
diameter [mm] 

Total rubber 
thickness [mm] 

Shape factor S1 Aspect ratio S2 

800 160 200 (5 x 40 layers) 40.0 4.0 
1100 220 203 (7 x 29 layers) 39.3 5.4 

 
 

 
 

Figure 3.2. Three seismic isolation analytical model types. 
 
Figure 3.2 shows three types of isolator models applied to bearings in the simplified analytical model. 
The mechanical model expressed in section 2 is used to represent the LRBs and the two other models 
are also used to help in understanding the effect of varying the vertical load on system response. The 
first is a fixed-base model, which can simulate the behavior of ordinary buildings. The second is a 
sway model, which is the as same a 2-DOF model that considers sway motion. This model can 
simulate the behavior of seismically isolated buildings, but does not include any interaction between 
the horizontal and vertical forces. The characteristics of isolators are shown in fig. 2.3(b). The third is 
a sway-rocking model, using the presented mechanical model. This model can include the influence of 
varying vertical loads on horizontal hysteretic behavior. The characteristics of isolators may change 
with compressive stress magnitudes during earthquake excitation as shown in fig. 2.6. 
 



4. RESPONSE ANALYSIS 
 
In this section, the influence of varying vertical loads on the behavior of seismic isolation bearings and 
the influence of this behavior on the response of isolated buildings during earthquake loading are 
investigated through a series of nonlinear time-history analyses. 
 
4.1. Steady-state Vibration Analysis 
 
We performed numerical analyses subjected to harmonic ground motion of varying frequencies to gain 
basic insights into the behavior of seismically isolated buildings, taking rocking response into 
consideration. The time history of harmonic ground acceleration, aG, is expressed by the following 
equation: 
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where  is an amplification factor and 2/TG is the frequency of ground motion. Sa is defined as a 
function of the period TG to be consistent with the response acceleration spectrum in the Japanese 
code. 
 
Figure 4.1 shows the relationship between the acceleration response of the superstructure and the 
period of input ground acceleration in steady-state vibration. Naturally, in the short-period range, the 
sway model and sway-rocking model produce less response acceleration than the fixed-base model. In 
the case of  = 2, the peak response of sway-locking model is much less than that of sway model. This 
response reduction is due to the occurrence of the buckling behavior of the isolators. At long-period 
range, response of the sway-rocking model is larger than the sway model. 
 

    
 

 
 

Figure 4.1. Response acceleration of superstructure ( = 1, 2).  
 
Figures 4.2 and 4.3 show the response displacement of the superstructure and the isolators. The 
amplitude of the input ground displacement, Sd, can be calculated by following equation: 
 

ܵௗ ൌ ܵ௔	/	ሺ
ଶగ

்ಸ
ሻଶ (4.3) 
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larger than that of the isolators, because the superstructure deforms. The trends observed in the 
response acceleration are also seen in the response displacement. 

 

    
 

 
 

Figure 4.2. Response displacement of superstructure ( = 1, 2).   
 

    
 

 
 

Figure 4.3. Response displacement of isolators ( = 1, 2).   
 
Figures 4.4 and 4.5 show shear force-shear displacement hysteresis loops of the isolator at left-side, in 
the case of  = 2, TG = 2.0 and 4.0. The sway model exhibits symmetrical hysteresis loops, with 
hardening behavior at TG = 4.0. The sway-rocking model also exhibits a symmetric hysteresis loop at 
TG = 2.0, however, the hysteresis loop at TG = 4.0 shows asymmetry and buckling behavior is observed 
in negative displacement range. The asymmetrical hysteresis loop and buckling behavior caused by the 
variation of axial load under rocking response can be simulated by using the presented mechanical 
model. 
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Figure 4.4. Shear force-shear displacement relationship of isolator ( = 2, TG = 2.0). 

 

 

    

 
Figure 4.5. Shear force-shear displacement relationship of isolator ( = 2, TG = 4.0). 

 
Under the rocking behavior, an overturning force causes variation of axial force on the right- and  
left-side isolators. The variation of the axial force, N, which tends to increase with shear displacement, 
can be estimated by following equation: 

 

ܰ ൌ ଴ܰ േ ௘ܽܯ ൈ
ு೐
௅

 (4.4) 

 
where N0 is the initial axial force, a is the acceleration response of the superstructure (mass point Me) 
and L is the distance between the left-side and right-side isolators. Therefore, the amplitude of the 
variation of axial force is proportional to the amplitude of the response acceleration. In the 
sway-rocking model, higher axial stress makes the stiffness of the isolators lower, and that lower 
stiffness causes lower response acceleration. The axial force varies within a limited range, and the 
progress of isolator buckling tends to be supressed. This behavior saves isolators from excessive 
instability. 
 
4.2. Seismic Response Analysis 
 
The well-known historic earthquake ground motion record, 1940 El Centro (E-W), is used for the 
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transient response analyses. The ground motion is input at three intensities, corresponding to peak 
ground velocities of 25, 50 and 75 cm/s. The 25 and 50 cm/s velocity levels are generally used as 
design levels for input ground motion in Japan, and the 75 cm/s velocity is regarded as ultimate level 
of excitation in this study. 
 
Figure 4.6 shows the maximum response values obtained from the analyses for the three excitation 
levels. At 25 and 50 cm/s, the sway model and sway-rocking model produce almost identical 
responses, with the displacement of isolators being not more than 30 cm (corresponding to a shear 
strain of 150%). In the ultimate excitation level, the response acceleration of the sway-rocking model 
is about 20% lower than that of the sway model, because the isolators buckle.  
 
Figure 4.7 shows the force-displacement relationship of the left-side isolator at the 75 cm/s excitation 
level. The maximum restoring force in the negative displacement of the sway-rocking model is 400 kN, 
about 60% of that of the sway model. This hysteresis loop shows buckling behavior with a maximum 
compressive pressure of 19 MPa. This buckling behavior may cause unexpected extra displacement of 
the isolators, and suggests that the isolators might be severely damaged. 

 

(a)    (b)    (c)  
 

 
 

Figure 4.6. Maximum response values obtained from the seismic response analyses 
(a) Acceleration of superstructure; (b) Displacement of superstructure; (c) Displacement of isolators. 

 

    
 

 
 

Figure 4.7. Force-displacement relationship of the left-side isolator (75 cm/s excitation level). 
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5. CONCLUSIONS  
 
This paper has investigated the behavior of seismically isolated buildings with multilayered 
elastomeric bearings, especially under rocking vibration caused by earthquake excitation. The 
conclusions are as follows. 
 
First, we presented a mechanical model for multilayered elastomeric isolation bearings. The model 
includes the interaction between shear and axial forces, and can represent the characteristic changes of 
isolators experiencing varying axial forces during earthquake excitation. 
 
Next, we produced an analytical model for seismically isolated buildings. The detailed sway-rocking 
model uses the presented mechanical model and can express the rocking behavior of seismically 
isolated buildings. Rocking behavior produces axial force variation on the isolators, and severe axial 
force may cause buckling. Detailed modeling considering rocking behavior is more important for taller 
isolated buildings, because the axial force variation on the isolators tends to be more significant in 
such structures. 
 
Finally, we present response analyses, one being a steady-state vibration analysis under sinusoidal 
excitation and the other being a transient response analysis under earthquake ground motion. We 
investigated the influence of shear-axial interaction on the behavior of the isolators by using the 
analytical model for isolated buildings. The results obtained from the detailed sway-rocking model 
differ from those given by the simple sway model under severe excitation. Using the sway-rocking 
model, the maximum response acceleration of the superstructure tends to be limited because of 
buckling of the isolators. This buckling may cause unexpected extra displacement of the isolators, and 
suggests that the isolators are severely damaged. Consideration should be given to the buckling 
behavior caused by severe axial loads for more accurate prediction of the response of these types of 
seismically isolated buildings. 
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