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SUMMARY: 
Two feed-forward control techniques for base-isolated buildings, in which the predicted propagation of seismic 
waves is used as input for control, are studied. One approach is a feed-forward control based on information 
about seismic motion obtained before its arrival. The empirical transfer function between two points along the 
propagation path of the seismic waves is used to predict the ground motion. A control algorithm using a limited 
period of the predicted ground motion is devised. The other approach is an optimal feedback control based on the 
state space equation of the entire augmented system, which includes the dynamics of the base-isolated building 
as well as the empirical transfer function of the seismic waves. The control performance of these two controls is 
compared and the effectiveness of the feed-forward control is confirmed. It is expected that this study will 
contribute to developing a new approach to feed-forward active control of building structures and equipment. 
 
Keywords: Active response control, Feed-forward control, Feedback control, Prediction of ground motion 
 
 
1. INTRODUCTION 
 
Since an active mass driver system was first used on an actual Tokyo building in 1989 [Kobori et. al, 
1991], there has been a steady increase in the number of buildings enhanced with active or semi-active 
response control systems in Japan. Active response control systems, and active mass damper systems 
in particular, have become firmly established as a technology that improves the habitability of super 
high-rise buildings during strong winds. Active response control systems are very effective. However, 
they use a feedback control law and are not suitable for controlling the seismic response of buildings 
due to limitations of control force and power. In other words, they are limited in application to the 
range from small to medium earthquakes. 
This situation has led to considerable interest in semi-active response control systems, which offer the 
potential to control building response in the event of a major earthquake. Steady progress is being 
made with regard to practical applications of this technology [Kurata et. al. 1999, Yoshida 2001, 
Nagashima et. al. 2010]. 
This paper focuses on the use of feed-forward control techniques in base-isolated buildings to improve 
the control performance and efficiency of active response control systems. One approach to 
feed-forward control is to make use of predicted earthquake ground motion before its arrival. An 
empirical transfer function for seismic waves between two points along the propagation path is used; 
one at the point of prediction (the location of the control system) and the other closer to the hypocenter 
of the earthquake being predicted. This transfer function, which is referred to as the prediction filter 
[Nagashima et. al. 2008], is identified in the form of a state-space equation using past earthquake 
observations and is then used for the real-time prediction of future ground motions. When a ‘target’ 
earthquake occurs and the seismic waves reach the point near the hypocenter, the observed 
time-histories are used as the input to the state-space equation and ground motions at the control site 
are calculated in real time before the arrival of the actual motion. A control algorithm that uses such 
predicted ground motions of limited duration, which is several times the natural period of the 
base-isolated building, is presented. 



Another approach is optimal feedback designed according to the state space equation of the entire 
augmented system, which includes the dynamics of the base-isolated building as well as the empirical 
transfer function of seismic wave propagation. 
The control performance of these two control approaches is compared and the efficiency of 
feed-forward control is evaluated with respect to the required control force and energy. 
 
 
2. LINEAR REGULATOR PROBLEMS WITH EXTERNAL EXCITATIONS 
 
2.1. Optimal feedback and feed-forward control 
 
To begin with, let us look back on the optimal control law for a class of optimal control problems – 
linear regulator problems with external excitations, following a variational approach [Kirk, D. E. 
2004]. 
The plant is described by the linear state equations 
 )()()((t) 0 ttt zEBuAxx   , (2.1) 
where A  and B  are n n and nm constant matrices, )(tx  is the state vector, )(tu  is the control 

input vector, and )(0 tz  is the ground base acceleration. 
The performance measure to be minimized is 
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where Q  is a real symmetric positive semi-definite matrix and R  is real symmetric and positive 
definite. The final time ft  is fixed, )( ftx  is free, and the states and controls are not bounded. 

The Hamiltonian is given by 
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The costate equations are 
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and the algebraic relations that must be satisfied are given by 
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Therefore, 

 )()( T1 tt pBRu   (2.6) 
Let us assume that the costate is expressed by the equation 
 )()()()( tttt sxKp   (2.7) 

Differentiating both sides with respect to t , we obtain 
 )()()()()()( tttttt sxKxKp   . 

Substituting from Eq. (2.4) for )(tp , and Eq. (2.1) for )(tx , and using Eq. (2.7) to eliminate )(tp , 
we obtain 
   )()()()()()()( -1T ttttttt T xKBBRKKAAKQK   
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Because this must be satisfied for all )(tx  and )(ts , we obtain 

 )()()()()( 1 ttttt T BKBRKQKAAKK   (2.9) 
and 
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To obtain the boundary conditions we have, from Eq. (2.7), 
 0sxKp  )()()()( ffff tttt . (2.11) 

Since this equation must be satisfied for all )( ftx , the boundary conditions are 



 0K )( ft , and 0s )( ft  (2.12) 

In the following study, a constant matrix K , which is obtained for an infinite-time process as 
ft , is used to determine the feedback control force. The K  matrix is obtained by solving the 

algebraic matrix Riccati equation 
 KBKBRQKAKA0 TT 1 , (2.13) 

obtained by setting 0K )(t  in Eq. (2.9). 
The optimal feedback and feed-forward control force is the sum of the optimal feedback control force 

)(tfbu  ( )(1 txT KBR ) and the optimal feed-forward control force )(tffu ( )(1 tTsBR ): 

 )()()()()( 11 ttttt TT
fffb sBRKxBRuuu   . (2.14) 

Substituting Eq. (2.14) into Eq. (2.1), we obtain 
 )()()()( 0 tttt c zEFsxAx   , (2.15) 

where TBRF 1  and KBRAA T
c

1 . 

The state space equation for )(ts , which determines the feed-forward control force, is expressed by 

 )()()( 0 ttt c zKEsAs T   . (2.16) 

To predict the input base acceleration )(0 tz , we introduce the following identified state space 
equations, which as noted above are known as the prediction filter [Nagashima et. al. 2008]:  
 )()()( tttd wDzAz ddd   , )()(0 tt dd zCz  , (2.17) 

where )(tw  is the input acceleration to the prediction filter. 

Once )(0 tz  is predicted with the help of Eq. (2.17), the optimal feed-forward control force may be 

calculated by integrating Eq. (2.16) backward in time starting from ftt  . It is generally believed that 

the whole time history of the input base acceleration should be known beforehand in order to 
determine the feed-forward control force. A control algorithm using the predicted base acceleration of 
limited duration will be considered and presented later. 
To study the frequency response characteristics of the feedback and feed-forward control with respect 
to the accelerations input into the prediction filter, an extended state space equation is defined from 
Eqs. (2.15), (2.16) and (2.17) as follows: 
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2.2. Optimal feedback control considering dynamics of prediction filter 
 
Next, an optimal feedback control is designed based on the state space equation of the entire 
augmented system, which includes the dynamics of the base-isolated building as well as the prediction 
filter (the empirical transfer function of seismic wave propagation). 
From Eqs. (2.1) and (2.17), the state space equation for the entire augmented system is established as 
follows: 
 )()()()( tttt EEEEE wEuBxAx    (2.19) 
where 
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The performance measure to be minimized is 
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where EQ  is a real symmetric positive semi-definite matrix and ER  is real symmetric and positive 
definite. 
The optimal feedback control force )(tEu  is obtained as 
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T
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where EK  is the solution of the following algebraic matrix Riccati equation 

 E
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As is clear from Eq. (2.21), the effects of the ground base accelerations are considered in the feedback 
control force. 
 
 
3. FUNDAMENAL STUDY ON FREUENCY RESPONSE CHARACTERISTICS 
 
3.1. Analysis model 
 
Let us consider a single-degree-of-freedom building model. The mass, the stiffness and the natural 
frequency of the building model are denoted by sm , sk , s , respectively. The damping coefficient 

and the corresponding damping factor are denoted by sc  and s . The displacement of the structure 

sx  is relative to the ground. The scalar control force and the ground base acceleration are given by 

)(tu  and )(0 tz , respectively. 

The state space equations are given by Eq. (2.1), where  )(),()( txtxt ss x , 

 










sss  2

10
2A ,  








 1

0

sm
B , 











1

0
E , 

s

s
s m

k
 , 

ss

s
s m

c




2
  (3.1) 

The performance measure is given by Eq. (2.2), where 
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The solution of the matrix Riccati equations are given by 
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Next, the prediction filter is simplified as a band pass filter, of which the transfer function is 
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The corresponding state space equation is given by (2.19), where 
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3.2. Comparison of control performance in the frequency domain 
 
The frequency responses of the optimal feedback and feed-forward control (FBFFC) presented in 
section 2.1, as well as those of the optimal feedback control (FBC) presented in section 2.2, with 
respect to the input acceleration )( iw  are calculated from the Fourier transform of Eq. (2.18) and 

Eq. (2.19), respectively. The parameters for the building model are as follows:  2s rad/s, 

01.0s  and kgms 0.1 . The parameters for the prediction filter are; 10/sh   , 70.0h , 

sd  10  and 707.0d . Figure 3.1. shows the frequency response function of the prediction 
filter. 



Figure 3.2.(a) shows an example of the frequency responses of the building velocity per unit input 
acceleration with FBFFC compared with those with FBC. The dimensionless weighting parameters for 

the control are defined as r , )/( 42
11 rmqq ss  and )/( 22

22 rmqq ss  . The frequency responses are 

calculated for the combinations 1
21 101  qq  and 0 (i.e. no control) with 0.1r . The equivalent 

modal damping factor of the building is increased to 21.7% by the feedback control. The 
corresponding frequency responses of the control forces per unit input acceleration are shown in 
Figure 3.2.(b). The velocity response with FBFFC is remarkably decreased and the required control 
force is less than with FBC. 
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Figure 3.1. Frequency response function of prediction filter 
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Figure 3.2. Frequency responses per unit input acceleration 
 
 
4. ALGORITHM TO DETERMINE FEED-FORWARD CONTROL FORCE 
 
It is rather easy to study the control performance of FBFFC in the frequency domain, as presented in 
chapter 3. To evaluate the optimal feed-forward control force in the time domain, it is necessary in 
general to know the whole time history of the ground base accelerations in advance [Sato 1990]. To 
evaluate the feed-forward control force, a control algorithm that uses the free vibration component that 
can be predicted in advance has been presented [Naraoka 1992]. A control algorithm that uses the 
limited duration of the input accelerations has been devised based on the dynamic programming 
approach [Kawahara 1989]. However, there appears to be no fully developed practical control 
algorithm to determine the feed-forward control force in the time domain. In the sections that follow, 
an optimal feed forward control that uses the whole time history is first considered, then a practical 
control algorithm approximating the optimal feed-forward control force based on the input base 

s /

s /

s /



acceleration of limited duration will be presented. 
 
4.1. Optimal feed-forward control with global optimization 
 
The impulse response function of the feed-forward control force may be calculated using Eq. (2.16) 
backward in time starting from ftt  , where )(0 tz  is replaced by the Dirac delta function )(t  as 

follows: 

 )()()( ttt c KEsAs T   (4.1) 

Let us assume that the transition matrix of the state space equation (4.1) is )(tΦ . The impulse 

response function )(th , which is an anti-causal function, is then obtained by 
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where )(tΦ  is calculated from the inverse Laplace transform of the transfer function 1)(  T
cs AI . 

The feed-forward control force at time t  may be given by 

 )()( 1 ttt f
T

ff   sBRu , (4.3) 

where )(ts  is calculated backward in time by the following equation, 
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The second term on the right-hand side of Eq. (4.4) is a convolution integral. Assuming the boundary 
condition 0s )( ft , Eq.(4.4) is simplified as 

  dttt
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As is clear from Eq. (4.5), the full time history of the ground base acceleration from ft  to t  must be 

known in advance to determine the feed-forward control force at t . 
Let us divide the time history of the ground base acceleration into N  blocks with each endpoint of 
an interval denoted by ),...,1(, Niti  . 

The feed-forward control force for the i -th block may be calculated by 

 )()( 1 ttt i
T

ffi   sBRu  (4.6) 

where )( tti s  is evaluated, following Eqs. (4.4) and (4.5), as 
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and 
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The feed-forward control force for the i -th block is determined by Eq. (4.6), which we call the 
feed-forward control by global optimization (GFFC). 
 
4.2. Optimal feed-forward control with individual optimization 
 
Next, let us consider the following individual performance measure: 
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where the ground base acceleration is assumed to be zero after it  (or the boundary condition 

0s )( it  is assumed). The optimal feed-forward control force for the i -th block may be calculated 

using Eq. (4.5): 

 )(ˆ)(ˆ 1 ttt i
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where 
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The feed-forward control force for the i -th block is determined by Eq. (4.10), which we call the 
feed-forward control by individual optimization (IFFC). The GFFC is expected to perform better than 
the IFFC, due to the effect of the first term on the right-hand side of Eq. (4.4), i.e. the homogeneous 

solution, which, however, may be negligible as long as itt   is sufficiently large that the transition 

matrix )( itt Φ  approaches 0 . 

If the homogeneous solution becomes small enough for di Ttt   and the ground base acceleration 

can be predicted for more than ad TT   seconds in advance, the IFFC )(ˆ tffiu  may approximate to 

the GFFC )(tffiu  for t  ranging between 1it  and ai Tt 1 . Using this principle, a control 

algorithm to improve the performance of IFFC is devised as shown in Figure 4.1., where the IFFC 
)(ˆ tffiu  of the coming ad TT   seconds is calculated at 1 itt  and used for aT  seconds; the IFFC 

)(ˆ 1 tffiu  of the coming ad TT   seconds is calculated at )( 1 aii Tttt    and used for 

aT seconds; feed-forward control forces are determined by incrementally repeating this procedure, 

which we call the feed-forward control by modified individual optimization (MIFFC). 
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Figure 4.1. Schematic for determining the feed-forward control force for MIFFC 

 
 
5. CONTROL PERFORMANCE IN TIME DOMAIN 
 
5.1. Analysis model 
 
Let us consider a single-degree-of-freedom building model. The parameters for the building model and 
the prediction filters are the same as those presented in section 3.1. The transition matrix of the state 
space equation (4.1) is expressed as 
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5.2. Comparison of control performance in the time domain 
 
A modified sinusoidal wave with a frequency of s  is used as the input acceleration, with the peak 

acceleration scaled to 1.0 m/s. The same control parameters as described in section 3.2 are used. The 
velocity responses with the FBFFC are calculated, where the GFFC or the IFFC is used to obtain the 
feed-forward control force. The responses with the FBC as presented in section 2.2 are also calculated 
for comparison. The input acceleration and the responses are shown in Figure 5.1. The input 
acceleration is divided into three blocks for calculation of the feed-forward control force for IFFC; 
each block has a duration of four seconds. 
Figure 5.1.(c) shows that the velocity response of the building with FBFFC (GFFC) is reduced 
significantly compared to that with FBC, using almost the same amount of control force. The velocity 
response with FBFFC (IFFC) is not as good as that with FBFFC(GFFC), but still far better than with 
FBC. The difference in control force between FBFFC (IFFC) and FBFFC (GFFC) is due to the 
homogeneous solution, as pointed out in section 4.2. 
To improve the performance of IFFC, MIFFC is studied, where the feed-forward control force is 
calculated for the four seconds of each block and the first one second is used for control. The 
responses with FBFFC (MIFFC) are compared with those using FBFFC (GFFC) and FBFFC (IFFC) in 
Figure 5.2. The feed-forward control force for IFFC is zero at each block endpoint (at four, eight and 
twelve seconds) as shown in Figure 5.2.(b), which causes control performance degradation. The 
feed-forward control force for MIFFC coincides with that for GFFC. As a result, MIFFC successfully 
maintains control performance that is as good as GFFC. 
To investigate the control performance of FBFFC (MIFFC) under the influence of earthquake 
excitations, the N-S component of the 18 May 1940 El-Centro Earthquake, shown in Figure 5.3., is 
scaled to a peak ground acceleration (PGA) of 1.0m/s and used as the input acceleration. The 

dimensionless weighting parameters are assigned as 1
21 101  qq  and 1

21 105  qq with 

0.1r  for FBC and FBFFC (MIFFC), respectively, such that the maximum control forces are 
comparable. The equivalent modal damping factors are increased to 21.7% and 44.1% for FBC and 
FBFFC (MIFFC), respectively. 
The maximum velocity responses for FBC and FBFFC(MIFFC) are 0.135m/s and 0.059m/s, 
respectively, while the corresponding maximum control forces are 0.386N and 0.354N, respectively. 
The maximum control power for FBFFC(MIFFC) is 0.016W, which is less than the 0.051W for FBC. 
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Figure 5.1. Comparison of responses with FBC and FBFFC 



-1.4
-0.7

0
0.7
1.4

0 2 4 6 8 10 12

IFFC

GFFC

MIFFC

s.

N

 
 (a) Total control force 

-1.4
-0.7

0
0.7
1.4

0 2 4 6 8 10 12

IFFC

GFFC

MIFFC

s.

N

 
 (b) Feed-forward control force 

-0.2
-0.1

0
0.1
0.2

0 2 4 6 8 10 12

IFFC

GFFC

MIFFC

s.

m/s

 
 (c) Velocity of building 

 
Figure 5.2. Comparison of responses with FBFFC 
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Figure 5.3. Comparison of earthquake responses with FBFFC 
 
 
6. CONCLUSIONS  
 
The authors present an investigation of feed-forward control techniques for base-isolated buildings in 
which the predicted propagation of seismic waves is used as the input for control. An empirical 
transfer function between two points along the seismic wave propagation path is used to predict the 
ground base acceleration in advance. Feed-forward control forces are then calculated backward in time 
using the limited-duration predictions of ground motions and the first few seconds of the resulting 
control force, which are free from homogeneous solutions, are used for control. The analysis 



demonstrates that it is not necessary to have available the whole time history of ground base 
acceleration in order to determine the feed-forward control force. 
Through numerical examples, it is demonstrated that optimal feedback and feed-forward control 
(FBFFC) performs better than optimal feedback control (FBC); FBFFC reduces building response 
drastically compared with FBC with the same amount of control force. 
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