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SUMMARY:  
This paper presents a new three-dimensional analytical model for the accurate simulation of the ultimate 
behavior of full-scale lead-rubber seismic isolations bearings. The model comprises multiple shear springs at the 
mid-height and includes the interaction between biaxial shear and axial forces with nonlinear hysteresis. Severe 
loading tests for a range of different full-size lead-rubber bearings were conducted to obtain data to validate the 
analytical model. The test programs included a variety of different loading patterns, such as monotonic, cyclic, 
and horizontal bidirectional earthquake ground motions. Buckling or stiffening behavior was observed under 
large shear deformations and high axial loads. Very good agreement between the experimental and analytical 
results was obtained, indicating that the model is useful for the prediction of the seismic response of isolated 
structures under severe earthquake ground motions. 
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1. INTRODUCTION 
 
Seismic isolation is the most effective technology for protecting structures from the damaging effects 
of earthquakes. The concept of seismic isolation is to move the fundamental period of a structure away 
from the predominant period of the ground motion through the introduction of flexible supports at the 
foundation level. It has been extensively used worldwide over the last three decades. Numerous 
earthquakes have confirmed the good response of seismically-isolated buildings, including the fully 
operational performance of isolated hospitals in the 1994 Northridge Earthquake, USA, and the 2011 
Great Tohoku Earthquake, Japan, amongst others. Seismic isolation has been proven to provide the 
highest level of seismic protection possible for buildings and other structures. 
 
The widespread use of seismic isolation has necessitated a better understanding of the ultimate 
behavior of isolation devices under large shear deformations or high compressive stresses. Elastomeric 
isolation bearings exhibit strongly nonlinear behavior, such as stiffening or buckling influenced by 
axial loading under large deformations. For the accurate prediction of the ultimate behavior of 
isolation devices, the authors have developed a series of mechanical models. The initial prototype 
model was developed in two dimensions, which comprised shear and axial springs at the mid-height 
and a series of axial springs at the top and bottom boundaries of the model. The latest model was 
developed by expanding the prototype model to three dimensions (Kikuchi et al., 2010). It comprises 
multiple shear springs at the mid-height and includes interaction between biaxial shear and axial forces 
with non-linear hysteresis. In the early stage of development of the model it was validated by showing 
that it could accurately predict the behavior of reduced-scale isolation bearings, with diameters of 
about 20 cm. The validation of numerical models with extreme loading data from testing of full-size 
isolation bearings, however, has generally not often been done, because of the capacity limitations of 
most test facilities and the limited opportunities to perform such tests. The authors have conducted 
severe loading tests of full-size lead-rubber bearings, and the data obtained from these tests presented 
an unusual opportunity for further validation of the analytical model. The diameter of the full-size 



bearings tested was approximately 1.0 meters. The test programs included a variety of different 
loading patterns, such as cyclic and horizontal bidirectional earthquake ground motions. Buckling or 
stiffening behaviors were observed in the tests under large shear deformations and high axial loads. 
The newly developed model initially assumed a uniform distribution of the compression modulus over 
the entire cross section of a bearing. While the assumption of uniform distribution was valid for the 
reduced-scale isolation bearings; however, it failed to accurately predict the behavior for the full-scale 
bearings. Therefore, in this paper, a refinement is introduced for the calculation of the compression 
modulus to include the influence of the bulk modulus compressibility and the shape of the bearing 
cross section. 
 
 
2. MECHANICAL MODEL 
 
Fig. 2.1 shows the mechanical model proposed to simulate the behavior of elastomeric isolation 
bearings. The model comprises multiple shear springs (MSSs) and an axial spring at the mid-height 
and two series of axial springs at the top and bottom boundaries. The MSS model is used in the 
mechanical model to represent the biaxial behavior of the elastomeric isolation bearings, which 
consists of a series of identical shear springs arranged radially to represent isotropic behavior in the 
horizontal plane (Wada and Hirose, 1989). Each spring in the series of axial springs at the top and 
bottom boundaries is a uniaxial, nonlinear spring and represents an individual fiber of the bearing's 
cross-sectional area. When this collection of springs is combined in the model, the nonlinear 
interaction behavior is achieved. The rigid columns, which represent the height of the bearing, are 
combined between the top and bottom series of axial springs and mid-height MSSs and the axial 
spring. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. Three-dimensional multiple-spring mechanical model 
 
The definition of the forces and displacements on the model is shown in Fig. 2.2. There are six 
displacement degrees of freedom – three translations and three rotations – at the external nodes, a and 
b. The internal nodes, m and n, have three displacement degrees of freedom: translation A and 
rotations B and C. The displacements for translations B and C and rotation A of the internal node, m, 
are equal to those of the external node, a. The same definition for nodes a and m is made for nodes b 
and n. By using incremental displacements of nodes a and m and assuming that plane sections remain 
plane, the relationship between the incremental force vector, fam, and the incremental displacement 
vector, uam, on nodes a and m can be obtained as follows: 

am am am  f K u  (2.1) 
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where ikNa is the tangential stiffness of the i-th axial spring, and ilC and ilB are the distances between the 
i-th spring and the centroid of the cross-sectional area of the bearing along the B and C axes, 
respectively (Fig. 2.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2. Forces and displacements on the mechanical model 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Axial springs at the top and bottom boundaries 
 
The relationship between the incremental forces and displacements on nodes b and n can be obtained 
by replacing a by b and m by n in Eqn. (2.1) as follows: 

bn bn bn  f K u  (2.2) 
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where Kbn is the stiffness matrix, fbn is the incremental force vector, and ubn is the incremental 
displacement vector of nodes b and n. 
 
Now consider the force-displacement relationships for the multiple shear springs and the axial spring 
at the mid-height of the model. The force-displacement relationship on nodes n’ and m’ in Fig. 2.2, 
which excludes the rigid columns, may be expressed as follows: 

' ' 'mn mn mn  f K u  (2.3) 

where 

 T' ' ' ' ' ' '
mn Am Bm Cm An Bn Cnf f f f f f       f  

 T' ' ' ' ' ' '
mn Am Bm Cm An Bn Cn            u

 

' ' ' '
1 2 1 2

' ' '
3 2 3'

' '
1 2

'
3

0 0 0 0

0

0

0 0

.

N N

mn mn mn mn

mn mn mn
mn

N

mn mn

mn

k k

k k k k

k k k

k

symm k k

k

 
   
  

  
 
 
 
  

K

,

 

 
where jkS is the tangential stiffness, j is the angle to the B axis of the j-th shear spring (Fig. 2.4), and 
kN is the stiffness of the axial spring at the mid-height. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4. Multiple shear springs at the mid-height 
 
In order to convert the force-displacement relationship of nodes m’ and n’, expressed by Eqn. (2.3), to 
nodes m and n, which includes the rigid columns, a transformation matrix is used. Taking the 
geometrical relationships of the deformations, the force equilibrium condition, and the P effect into 
account gives the transformation matrix. Fig. 2.5 shows the geometrical relationships of the 
deformations and the forces in the AC plane. Let ACT be the transformation matrix in the AC plane, 
ACu’mn and ACf’mn be the displacements and forces on nodes m’ and n’, and ACumn and ACfmn be 
those on nodes m and n, respectively. The transformation of the displacements and forces may be 
expressed by 
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and h is the total height of the bearing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5. Geometrical relationships of the deformations and forces in the AC plane 
 
The transformation matrix, ABT, in the AB plane can be constructed using the same procedure as for 
the AC plane, expressed by Eqns. (2.4) and (2.5). The transformation matrix, T, is formed by 
assembling the associated components of ABT and ACT. Finally, the force-displacement relationship on 
nodes m and n may be expressed as follows: 

mn mn mn  f K u  (2.6) 

T '
mn mn  K T K T  (2.7) 

The overall stiffness matrix, Kab, is obtained by arranging the elements of the partial stiffness matrices, 
Kam, Kmn, and Knb, into an 18 by 18 matrix and adding a linear torsional stiffness component. Finally, 
the relationship of the forces and displacements at the external and internal nodes in the model may be 
expressed as follows: 
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and fex and uex are the incremental forces and displacements on the external nodes, a and b, and fin 
and uin are those on the internal nodes, m and n, respectively. 
 
 
3. HYSTERESIS MODEL 
 
The shear hysteresis model previously developed by the authors, which is capable of predicting the 
behavior of elastomeric isolation bearings under large shear deformations, is applied to each spring in 
the MSS model (Kikuchi and Aiken, 1997). In the proposed mechanical model, the reduction of 
horizontal stiffness and eventual buckling behavior due to high axial loading is represented by the 
interaction between the shear and axial forces in the tilted MSS model and the axial springs. Therefore, 
the hysteresis properties to be used for the shear springs in the MSS model should be those under low 
compressive stress (ideally under zero compressive stress). The shear force-shear strain relationship up 
to 400% strain used for the MSS model is shown in Fig. 3.1(a) (Kikuchi et al., 2010). 
 
The stress-strain relationship for the series of axial springs at the top and bottom boundaries is shown 
in Fig. 3.1(b). In general, a laminated rubber bearing exhibits high stiffness and yielding stress in the 
compression region and low stiffness and yielding stress in the tension region. The relationship 
between vertical strain and stress is antisymmetric. The behavior represented by the model shown in 
Fig. 3.1(b) is generally accepted for the nonlinear vertical behavior of elastomeric isolation bearings. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Shear springs in the MSS  (b) Axial springs at the top and bottom boundaries 
 

Figure 3.1. Hysteresis models 
 
The previously developed model assumed a uniform distribution of the initial compression modulus, 
Einit, over the cross section of a circular bearing, as shown in Fig. 3.2(a), which is given by Eqn. (3.1), 
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where E0 is the Young’s modulus of rubber,  is a constant related to the rubber's hardness, S1 is the 
rubber's shape factor, and K is the bulk modulus of rubber. 
 
In the new model presented herein, an improvement is made in the calculation of the initial 
compression modulus. The distribution of the compression modulus is considered as shown in Fig. 
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3.2(b). The compression modulus is computed from Eqn. (3.2), which is expressed as a function of the 
distance, r, from the centroid of the bearing cross section. Eqn. (3.2) is the exact solution of the 
governing equation of the pressure distribution considering the influence of the bulk compressibility 
(Kelly, 1997), 
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and I0 is the modified Bessel function of the first kind of order zero, G is the shear modulus of rubber, 
and t is the thickness of the rubber pad. 
 
 
 
 
 
 
 
 
 
 

(a) Uniform  (b) Bessel function 
 

Figure 3.2. Distribution of initial compression modulus 
 
The hysteresis model shown in Fig. 3.1(b) defines the tangent compression modulus. The stiffness of 
each axial spring, ikNa, at the top and bottom boundaries is obtained from 

i i
i Na

E A
k

l


  (3.3) 

where iE is the tangent compression modulus of the i-th spring, iA is the incremental area 
corresponding to the i-th spring, and l is the imaginary length of the spring. One half of the total height 
of the rubber in the bearing is usually used for this imaginary length. 
 
 
4. SIMULATION ANALYSES 
 
Tests of large lead-rubber bearings were conducted to investigate their mechanical characteristics 
under severe loading conditions (Sherstobitoff et al., 2008). Fig. 4.1 shows the dimensions of the 
lead-rubber bearings used for the tests. The tests were conducted at the University of San Diego 
SRMD Testing Facility, which is the most sophisticated facility of its type in the world for testing 
seismic isolation devices. The test program included a variety of different loading patterns, such as 
monotonic, cyclic, and horizontal bidirectional earthquake ground motions. The results of two 
different types of tests were selected to compare against the results given by the analytical model 
(Table 4.1). 
 
The parameters used for the simulation analyses are summarized in Table 4.2. Some of these 
parameters were determined by initially evaluated test results for other types of elastomeric isolation 
bearings. From previous analyses it was understood that the convergence of the model depends on the 
cross-section discretization selected for the analysis. A 50x50 grid of axial springs was selected as 
appropriate for the bearing design. Three different analysis cases for each test were performed in order 
to demonstrate the validity of the refinement introduced to the mechanical model (Table 4.3). The 



loading sequence used for the analyses was exactly the same as for the tests. Initially, the axial load 
was applied to the top of the model, then the test shear displacement history was applied. 
 
 
 

Rubber diameter 1016 mm 

Lead plug diameter 200 mm 

Rubber layers 8 mm x 40 layers 

Steel shims 3.04 mm x 39 layers 

Shape factor, S1 31.75 

Aspect ratio, S2 3.18 
 
 

Figure 4.1. Lead-rubber bearing design details 
 
Table 4.1. Tests selected for analytical comparison 

Test 1 Shear capacity limit-state test 

Unidirectional, one cycle 

Constant axial load (stress): 14,000 kN (17.3 MPa) 

Peak displacement (shear strain): 320 mm (100%), 640 mm (200%) 

Peak velocity: 63.5 mm/s 

Test 2 Bidirectional, dynamic earthquake input test 

Constant axial load (stress): 14,000 kN (17.3 MPa) 

 1999 Kocaeli Earthquake X & Y displacement time histories, real time 
 
Table 4.2. Bearing parameters used for the simulation analyses 

Increments in the top and bottom boundaries 50 x 50 

Number of springs in MSS model 8 

Shear modulus of rubber, G 0.49 MPa 

Young’s modulus of rubber, E0 1.47 MPa 

Bulk modulus of rubber, K 1960 MPa 

Constant related to rubber hardness,  0.85 

Tension yield stress, ty 1 MPa 

Tension yield modulus, ty Einit/100 

Compression yield stress, cy 100 MPa 

Compression post-yield modulus, cy Einit/2 
 
Table 4.3. Analysis cases 

Case 1 P- effect not considered 

Case 2 P- effect considered, uniform distribution of compression modulus 

Case 3 P- effect considered, Bessel function distribution of compression modulus 
 
The experimental results shown in Fig. 4.2 were obtained from the shear capacity limit-state tests as 
summarized in Table 4.2. The axial load applied to the isolator in this test was approximately 26% 
greater than the critical load for the 640 mm shear displacement (11,095 kN). Consequently, the 
isolator hysteresis exhibits negative incremental stiffness at shear strains beyond about 100%. The 
analytical results are also shown in Fig. 4.2. The experimental hysteresis loop at 100% peak shear 
strain doesn’t exhibit negative incremental stiffness, therefore all three analysis cases show good 
agreement with the test result. However, the analytical hysteresis loops don’t agree well with the test 
results at200% peak shear strain if the P- effect is not considered, as shown in Fig. 4.2(a). The 
hysteresis loops obtained from both of Cases 2 and 3 exhibit negative incremental stiffness. Case 3 



predicts the behavior more accurately than Case 2, and shows good agreement with the test result. This 
shows that the refinements to the analytical model have improved the capability to accurately predict 
bearing behavior under extreme loading conditions. The distribution of the compression modulus over 
the cross-section leads directly to the geometric moment of inertia. The accurate representation of 
compressive behavior is important, because the bending stiffness has a strong influence on the 
inclination of the shear springs at the mid-height of the model. The Bessel function distribution of the 
compression modulus as shown in Fig. 3.2(b) produces lower bending stiffness than does the uniform 
distribution of the compression modulus. Consequently the refined compression modulus distribution 
improves the accuracy of the simulation analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Case 1  (b) Case 2 (c) Case 3 
 

Figure 4.2. Comparison of analytical and test results for uni-directional cyclic loading 
with high compressive stress (17.3 MPa), Test 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Case 1  (b) Case 2 (c) Case 3 
 

Figure 4.3. Comparison of analytical and test results for bi-directional dynamic earthquake input, 
with high compressive stress (17.3MPa), Test 2 
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The experimental results shown in Fig. 4.3 were obtained from the bi-directional, dynamic earthquake 
tests described in Table 4.2. An axial load of 14,000 kN was applied, then the bearing was subjected to 
bi-directional horizontal displacement time histories determined from the seismic response analyses of 
an isolated tower structure subjected to ground motions from the 1999 Kocaeli, Turkey, MW7.4 
Earthquake (Sherstobitoff et al., 2008). The peak test displacement and velocity were 528 mm and 785 
mm/s, respectively, and the total duration of loading was 22 s. Such as loading can categorized as a 
severe, high-speed loading test. Slight negative incremental stiffness is observed in the X-direction 
hysteresis. The analytical results are also shown in Fig. 4.3, and it can be seen that Case 3 accurately 
predicts the test bi-directional hysteresis behaviour. 
 
 
5. CONCLUSIONS 
 
A three-dimensional mechanical model for seismic isolation bearings under large shear deformations 
and high axial loads has been developed. The model comprises MSSs at its mid-height and a series of 
axial springs at the top and bottom boundaries. The model can capture the interaction between 
multi-directional shear displacement and axial force, non-linear hysteresis, and the dependence on 
vertical load by considering both material and geometrical nonlinearities in its formulation. The 
present work has introduced a refinement for bearing compression modulus to include the influence of 
the bulk modulus compressibility and the shape of the bearing cross section. The model includes the 
distributions of the compression modulus at the top and bottom boundaries expressed as Bessel 
functions. 
 
The results of two types of severe loading tests of full-scale lead-rubber isolation bearings were used 
to show the validity of the refined model. The tests were a shear capacity limit-state test and a 
bi-directional, dynamic earthquake test. Negative incremental stiffness was observed in the hysteresis 
loops obtained from both tests, due to high axial load and large shear displacement. Simulation 
analyses were conducted for the tests. The influence of the P- effect and compression modulus 
distribution on the bearing shear force-displacement hysteresis was examined. The best agreement 
between the experimental and analytical results was obtained when both the P- effect and Bessel 
function compression modulus distribution were considered. The results comparisons indicate that the 
proposed model is useful for the prediction of the response of seismically-isolated structures under 
severe earthquake ground motions. 
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