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SUMMARY 
A new algorithm—Mixed Finite Element Method, was used for nonlinear dynamic fictional contact problems of 
high arch dams with contraction joints. Based on this method, the system of forces acting on the contactor was 
divided into two parts: external forces and contact forces. The displacements of contactor were chosen as the 
basic variables and the nodal contact forces on possible contact region were chosen as the iterate variables, so 
that the nonlinear iteration process was only limited on the possible contact surface. In this way, the 
sophisticated contact nonlinearity was shown by the variety of the contact forces. Thus the iterative procedure 
became easily to be carried out and much more economical. The numerical method for the analysis of dynamic 
dam-water-interaction, integrated solution base on the generalized Newmark-β direct integral method, was 
discussed to establish a method which is fairly simplified but without loss of accuracy for the simulation of the 
dynamic pressure of the water. The artificial multi-transmitting boundary condition with implicit finite element 
algorithm is applied to the nonlinear seismic analysis of high arch dams together with the mixed finite element 
method for fictional contact problems and the algorithm for dam-water-interaction. In this way, a fairly perfect 
and high efficiency analysis method for seismic analysis of arch dams with contraction joints and 
dam-water-foundation interaction. Some valuable conclusions were obtained from the calculation and analysis of 
the seismic response of a high arch dam following the proposed method. 
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1. Introduction 

For construction facilitation and in order to control tensile forces due to concrete shrinkage, 
temperature variations, concrete arch dams are typically built in cantilever monoliths separated by 
vertical contraction joints. Opening and closing or sliding of the contraction joints will happen during 
earthquakes in reality，Several studies (Gregory L. Fenves and Soheil Mojtahedi,1993],[B. Weber, 
J-M. Hohberg and H. Bachmann,1990], [Ahmadi MT and Razavi S,1992] show that the contraction 
joint plays an important role in the nonlinear response of high arch dams during strong earthquakes. 

The importance of the joint-opening mechanism has motivated several analytical research efforts. The 
joint behavior in arch dams was described by Clough [Fenves G L, Mojtahedi S and Reimer R 
B,1992]. Dowling and Hall [Dowling M L and Hall J F,1989] have presented a discrete joint model 
represented by nonlinear springs for arch dams that takes into account the gradual opening and closing 
of vertical contraction joints and horizontal cold joints. Fenves et al. [Fenves G L, Mojtahedi S and 
Reimer R B,1992] developed a nonlinear joint element and numerical analysis procedure for 
calculating of the nonlinear seismic response of arch dams when the contraction joints open and close. 
In fact, the behavior of contraction joints on the response of the arch dams can be regard as typical 
dynamic contact problems with friction and initial gaps. Problems involving contact with friction and 
initial gaps are among the most challenging ones in solid mechanics and at the same time of crucial 
practical importance in many engineering branches. The chief difficulty in simulating those problems 
lies in their inherent and strong nonlinearity, which comes from that both the region of contact and the 
contact forces distribution are unknown prior to the analysis. Although several formulation procedures 
have been developed for contact problems, there is still a great need for a reliable, accurate, especially 
more effective method. 

Other two key factors for the seismic analysis of arch dams are the dam-water-interaction and the 
effects of radiation damping of infinite foundation. A new integrated solution base on the generalized 



 

Newmark-β direct integral method [M.G.KATONA, ZIENKIEWICZ,1985] was established for the 
dynamic analysis of dam- water interaction. The artificial multi-transmitting boundary condition with 
implicit finite element algorithm is applied to the nonlinear seismic analysis of high arch dams 
together with the mixed finite element method for fictional contact problems and the algorithm for 
dam-water-interaction. The purpose of the paper is to provide a numerical method to simulate the 
nonlinear seismic response of the arch dams with the consideration of the above three important 
factors. 

2. DYNAMIC CONTACT MODEL 

2.1 mechanical descriptions 

With no loss of generality, consider two elastic bodies Ω1、Ω2, as shown in Figure 1, which are brought 
into contact by the external force F. Each boundary of the two bodies IΓ is divided into three disjoint 
parts: I I I

t uΓ Γ Γ Γ= + + I
c . I

cΓ  which is the potential contact region. Here the superscript I=1, 2 
denotes the two bodies, respectively. Other notations used in this section are given as follow: If : 
contact forces on I

cΓ ; fξ , fη , fζ : component of contact forces f  in local coordinate ξηζ , 
respectively; Iu :displacement vector on I

cΓ ;δ  is the gaps between Ω1 and Ω2 measured in the 
normal direction, 1 2( )u u 0δ ξ⋅

r
δ+= − , where ξ

v
 is the normal direction to the contact region, 0δ is the 

initial normal gaps. 
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Figure1. Mechanical model for contact problems 

For contact problems, three important principles, the impenetration condition, normal traction 
condition and frictional condition, must be taken into account. When the three contact statuses (stick, 
slip and separation) are involved, those conditions mentioned above can be summarized as Table 1: 

Table 1.  Contact conditions for contact problems with friction and initial gaps 

Contact status Equality constraint Inequality constraint 

Separation 1 2 0f f= =  0δ >  

Stick 0δ = , 1 2f f= −  tf Aξ σ< ⋅ , 

cAfff ⋅+⋅−<+ ξζη μ22

 



 

Slip 0δ = , 

2 2f f fη ζ ξμ+ = − ⋅ + ⋅A c   

Af t ⋅<σξ  

2.2 Finite Element Formulations 

Assuming that the analysis of nth step has been finished, the incremental dynamic equilibrium equation 
for n+1th step at time can be expressed as: 

1 1 1 1n n n n n nMu Du Ku F f fΔ+ + + ++ + = + +&& &                                          (2.1) 

where M is the global mass matrix; is the global damping matrix, here the proportional Rayleigh 
damping assumption is adopted

D
D M Kα β+ K= ;  is the global stiffness matrix; 1nF + is the vector of 

total external load at time t+Δt; is the vector of total contact force at time t; and , vector of 
incremental contact force at time t which are greatly concerned about.

nf nfΔ
u 1n+ , 1nu +& ,  is the vector of 

displacement increment, velocity increment, acceleration increment at time t+Δt, respectively, the 
superscript (·) refers to time differential. 

1nu +&&

Following the generalized Newmark time integration scheme, the equation with the variables of the 
acceleration increment is obtained as: 

n n nK u FΔ Δ Δ= +&& f                                                         (2.2) 

Where K , nFΔ is the effective stiffness matrix and effective external load increment and can be 
expressed as following, respectively: 

2
1 1 2(1.0 ) ( )K t M t t Kαβ Δ ββ Δ β Δ= + + +                                          (2.3) 

1 ( ) (p p p
n n n n n n n )F F f u u M u uΔ α+= + − + − +&& & & Kβ                                     (2.4) 

Here the superscript p refers to the predicted quantities, 1β , 2β  are Newmark parameters for time 
integration. 

Introducing the matrix C into above equation, equation (2.2) can be rewritten as 

1
n nu K F C fΔ Δ−= +&& nΔ                                                       (2.5) 

Where the matrix C is the flexibility matrix which is defined on the possible contact boundary I
cΓ . An 

arbitrary component of C, cij represents flexibility coefficient corresponding to the acceleration at the 
freedom i due to a unit force at the freedom j. 

Considering equation (2.5) and , if 1n nu u uΔ += − n nuΔ  is defined as  

2 1
2

p
n n nu u t K F uΔ β Δ Δ−= + − n                                                  (2.6) 

One obtains 

2
2n nu u t CΔ Δ β Δ Δ= + nf                                                     (2.7) 



 

It is important to be noted out that equation (2.5), equation (2.7), and the following equations in this 
section are only performed for the DOF (Degree of Freedom) on the possible contact surface, not for 
all the DOF of the whole system. 

According to the Newton’s third law, it is obvious that 1 2
n n nf f fΔ Δ Δ= − = , and moreover, incorporating 

flexibility matrix  and  into , applying above equation (2.7) to point 1 and 2 of a 
given node pair, it gives 

1C 2C 1C C C= + 2

1 2 1 2
2

2

1 (( ) ( ))n n n nC f u u u u
t

Δ Δ Δ Δ
β Δ

= − − − nΔ                                        (2.8) 

Equation (2.8) is the finite element compliance equation of the mixed finite element method for the 
dynamic contact problems proposed in this paper. In this equation, the second term in 
right-hand-side, 1 2( )u uΔ Δ−

2 )uΔ

n n

1( nuΔ −

, stands for the difference of incremental displacement only due to the 
external load increment, as can be seen easily from equation (2.6). Therefore, it is nothing to do with 
the current contact status and can be obtained by back-substitution directly. While as for the first term 
in right-hand-side,  it denotes the difference of incremental displacement induced by both 
the external load increment and the contact force increment. From this view of point, both the 
right-hand-side and the left-hand-side of the above equation are associated with the contact state. An 
iterative method taking into account different contact status is necessary to solve the equation.  

n

3. NUMERICAL SCHEME FOR DAM- RESERVOIR DYNAMIC INTERACTION 

Considering free surface boundary, fluid-structure-interaction boundary, fluid absorb boundary and 
bottom absorb boundary, the governing equation of the fluid domain can be discretized by the standard 
Galerkin weighted residual method [ZHAO, 2006]. Combining with the general dynamic equilibrium 
equation for the solid domain, the finite element formulations for the dynamic dam-water interaction 
can be expressed as following: 
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Where: 
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Following the generalized Newmark time integration scheme, the above equation can be rewritten in 
time domain as following which can be solved step by step 
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Where and, 1u nR + , 1p nR +  represents the generalized load vector for the solid domain and fluid domain, 

while is a coefficient with value ofΦ 2
2β Δt

ρ
−

1 for matrix symmetric consideration. 



 

4. SIMULATION OF THE RADIATION DAMPING EFFECT 

In the seismic analysis of high concrete dams in hydraulic engineering, the traditional model of fixed 
boundary with massless foundation were often adapted, and the radiation damping of foundation and 
the inhomogeneity input of wave-motion could not be taken into account. In order to overcome the 
defect of traditional methods and to find a new simple and effective time-domain method to eliminate 
the influence of boundary reflection, the two order multi-transmitting formula (MTF) given by 
LIAO[LIAO, H L WONG, B YANG and Y YUAN,1984] was employed in this paper. Following the 
artificial boundary condition (ABC) based on MTF, the foundation of the structure was divided into 
two parts: inner region and outer region. The inner region is solved by implicit finite element 
formulation mentioned above, while the outer region is solved by MTF explicitly. In this way, the 
artificial multi-transmitting boundary condition was combined with implicit finite element formulation 
and applied to the nonlinear seismic analysis of high arch dams together with the mixed finite element 
method for fictional contact problems and the algorithm for dam-water interaction 

5. APPLICATION 

The previously developed model has been applied to the seismic response of a high arch dam with 
contraction joints. The material properties are: modulus of elasticity E=22Gpa, Poisson’s 
ratio 0.167= 0.7, coefficient of frictionν μ = , unit weight , cohesive strength324.0 /kN mρ = 0c = ，

initial tensile strength MPa0.5tσ = ，  initial normal gaps 0 0δ = . The dam is a 235-m high 
double-curvature arch dam. It has a crest length of 304.8m, and the thickness of the centre cantilever 
varies from 48m at the base to 10m at the crest. The dam consists of fourteen cantilevers separated by 
thirteen contraction joints. Finite element model of the dam and the layout of transverse joints are 
shown in Figure 2. An artificial ground motion, is applied both in the stream and cross-stream 
direction. The opening and closing of the joints and its effects to the response of dam under the 
excitation of ground motion are studied. Solution for the static response of the dam-water-foundation 
with upstream water level 202m is obtained before determining the nonlinear earthquake response. 

 

Figure 2. Finite element model and layout of transverse joints 

 

Figure 3. Time histories of joint opening 



 

 

Figure 4. Time histories of major principal stress 

Time histories of joint openings of point A and B, as marked in Figure 2, are plotted in Figure 3, while 
Figure 4 gives the time histories of the major principal stress of point c, both in the case of contraction 
joints are considered or not.  

It is founded that once the tensile stress exceeds the tensile strength during the earthquake, the joints 
will open and consequently the tensile stress will be released. This is because large arch tensile 
stresses can not be transferred across the contraction joints, hence arch tensile stresses releasing and 
the internal forces redistributing from the arch action to cantilever action will take place. Some 
researchers have drawn the same conclusion about this, as in [Lotfi V, Espandar R,2002],[ Ahmadi M 
T,Izadinia M and Bachmann H,2001]. 

 

Figure 5.Comparison of joint opening by different reservoir models 

The joint opening is an important calculating index for the seismic analysis of arch dams with 
contraction joints. The effects of different reservoir models on joint opening of high arch dams are 
shown in Figure 5. The results show that remarkable calculation error would induce if the water 
compressibility is omitted. Both the amplitude and the distribution of the maximal joint opening along 
the dam axis are different compare with the compressible case. The Westergaard formulation [R W 
CLOUGH,1982] and the incompressible model exaggerate the effect of the water, and the 
compressible model is recommended for the dynamic characteristic analysis of high arch dams. 

6. CONCLUSION 

A new effective iterative method—Mixed Finite Element Method for the solution of dynamic contact 
problems is presented. Firstly, the mechanical model for three-dimensional dynamic frictional contact 
problems with initial gaps is presented, and then the finite element compliance equation is derived. 
The iteration process is given in detail at last. The proposed method is applied to the seismic response 
of high arch dams with contraction joints. It compares well to results obtained by others. 

It is to be noted out that, for a structure with several joints, for instance arch dam, the system is 
divided into several substructures by joints. The substructure keeps its linearity during loading if the 
material is linear elastic one. Some methods couple all the DOF of the joints together according to the 
condensation of DOF, thus the flexible matrix obtained through those methods is a full matrix, which 
is not easy to handle. However, numerical studies have shown that it is only necessary to retain the 
coupling between two adjacent joints. In effect, each linear substructure is only coupled to its adjacent 



 

substructures through foundation. From this point of view, the flexibility matrix obtained in this paper 
is symmetric and sparse, thus the iterative procedure become easier to be carried out and much more 
economical. 
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