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Summary: 
The Saraighat bridge, a 1.3 km long rail-cum-road double-deck steel truss bridge over the mighty river 
Brahmaputra in Assam, India, was made open to traffic in 1962 and is considered as a lifeline of North-East 
India. This important bridge structure is targeted for health monitoring due to its age as well as its existence in 
high seismic zone. Moreover, there exists an interest to observe the modal parameters of this unique bridge 
structure. Operational modal analysis (OMA) is carried out for modal parameter identification using the ambient 
vibration data in form of acceleration response. Analysis is carried out using three major techniques both in time 
and frequency domain. Identified natural frequencies based on all the techniques are observed to be in good 
agreement.    
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1. INTRODUCTION 
 
Structural system identification helps to construct fairly accurate numerical model of a structural 
system based on the knowledge of physical input as well as output. This area, generally referred as 
experimental modal analysis (EMA) (Ewins 2000), considers commonly modal model as the 
identification model of a structural system. However, in case of large structures it becomes difficult to 
carry out EMA providing artificial input excitation. Hence, operational modal analysis (OMA) using 
output-only response data is highly considered for identification of modal model associated with 
natural frequency, damping ratio and mode shape in case of large structures. Modal parameters 
identified periodically can be considered for structural health monitoring (SHM). Further, identified 
modal parameters are required to update the numerical FE model to a more accurate one. Such an 
updated numerical finite element (FE) model is further required for reasonable prediction of output as 
well as effective design of control devices. 
 
One technique which is considered as a major contribution for OMA in time domain is natural 
excitation technique (NExT) (James et al. 1995). It explains that the correlation function (CF) between 
two ambient vibration response measurements has the same analytical form as the impulse response 
function (IRF). This helps to apply the major non-parametric system identification techniques in OMA 
using CF in the form of IRF. Eigensystem realization algorithm (ERA) (Juang & Pappa 1985; Juang & 
Pappa 1986) is such a technique used for multi-input multi output (MIMO) based identification using 
IRF or CF. ERA is developed based on minimum realization theory in discrete time domain of system 
engineering. Next, the data-driven stochastic subspace identification (SSI-DATA) technique (Van 
Overschee & De Moor 1996) identifies the structural system in form of state space matrices directly 
from the ambient response data. Some of the important inherent steps / measures of SSI-DATA are 
orthogonal or oblique projection, estimation of Kalman states, least-square, singular value 
decomposition (SVD) etc. Finally the modal parameters are obtained using the identified state space 
model. Covariance-driven stochastic subspace identification (SSI-COR) technique (Peeters & De 
Roeck 1999) is another technique based on the framework of SSI. The block Toeplitz matrix is 



decomposed using SVD to obtain the observability matrix and the stochastic controllability matrix. 
Subsequently, the modal parameters are obtained. In many cases, it becomes difficult to make 
measurement from all the degrees of freedom (DOF) at once while carrying out the ambient testing of 
large structures. All those DOF are divided into several set-ups using overlapping common reference 
sensor and data are recorded for different set-ups at different time. A novel approach based on SSI as 
SSI-reference (Peeters & De Roeck 1999; Peeters & De Roeck 2008) is developed to consider the 
multiple set-ups in the identification stage itself. Some other important techniques (Maia and Silva 
1998) in time domain are referred as: Least-squares complex exponential (LSCE) algorithm, 
polyreference least-squares complex exponential (PRCE) method, Ibrahim time-domain (ITD) as well 
as AR and ARMA based techniques. LSCE and PRCE are two techniques which apply least-square for 
modal parameter identification. LSCE is single input multi output (SIMO) based technique and PRCE 
is considered as the MIMO extension of LSCE. ITD technique is another SIMO technique which 
identifies the modal parameters using the free decay responses. Free decay responses can be estimated 
from the ambient vibration responses using the random decrement technique and this makes possible 
for the techniques like ITD to identify the modal parameters using ambient vibration data. Further, 
auto regressive (AR) as well as auto regressive moving average (ARMA) based identification 
techniques have been implemented for modal parameter identification using ambient responses. 
 
In case of frequency domain, the simplest method is the peak-picking (PP) method (Bishop & 
Gladwell 1963). It provides reasonably good results under the assumption that the modes are well 
separated and the damping is lower. Frequency domain decomposition (FDD) method (Brincker et al. 
2001) is presented based on the SVD of the power spectral density (PSD) matrix at every discrete 
frequency. Natural frequency and damping ratios can be obtained using the small segment of single 
degree of freedom (SDOF) density function around the peak of a PSD function. The first singular 
vector corresponding to a natural frequency is considered as the mode shape of that frequency. FDD 
method is further improved as frequency-spatial domain decomposition (FSDD) method (Zhang et al. 
2010) based on similarity establishment with the well-accepted complex mode indicator function 
(CMIF) method. Modal damping ratios are identified in FSDD by SDOF curve fitting over the density 
function obtained around the peak of the PSD based on higher MAC.  
 
In the present study, Saraighat Bridge - a large double deck steel truss bridge, is considered for the 
modal parameter identification. Three important and widely used techniques are employed for 
identification of modal parameters using recorded ambient acceleration time histories. NExT-ERA and 
SSI-DATA are used as the time domain techniques while FSDD is considered as a frequency domain 
technique.   
 
 
2. MODAL IDENTIFICATION TECHNIQUES 
 
The modal parameters are identified using three important techniques: NExT-ERA, SSI (data driven) 
and FSDD. Some details regarding these techniques are presented below. At first, the state space 
equations in discrete time domain are referred as  
 
 s(k + 1) = As(k) + Bz(k)                     (1a)
  
 y(k) = Cs(k) + Ez(k)                    (1b) 
 
where, A, B, C, E represents the discrete time state space matrices, s represents the states, k represents 
the discrete time, while z and y represent the input and output respectively. These important modal 
identification techniques are described in the subsequent sub-sections. 
 
2.1. Natural Excitation Technique with Eigen-system Realization Algorithm (NExT-ERA)  
 
It is a two-step identification where NExT (James et al. 1995) is applied to estimate the impulse 
responses from ambient data in the first phase. Subsequently, ERA (Juang & Pappa 1985) is employed 



to identify the state space matrices in discrete time domain from the estimated impulse responses. 
Using the estimated impulse responses the Markov parameters blocks are formed and these Markov 
parameter blocks are used to form the Hankel matrix. The Markov parameters can be written as  
 
 M(k) = CAk–1B                        (2) 
 
Considering the number of input and output as n1 and n2 respectively, the size of a Markov parameters 
becomes n2×n1. Now, the Hankel matrix is represented as 
 

 H൫k–1൯ = ൦

M(k) M(k+1) ⋯ M(k+j)
M(k+1) M(k+2) ⋯ M(k+j+1)

⋮ ⋮ ⋱ ⋮
M(k+i) M(k+i+1) ⋯ M(k+i+j)

൪                   (3) 

 
where, i=1, 2, ….. r1-1 and j=1, 2, …. s1-1, with r1 and s1 as integers. Now the size of the Hankel 
matrix becomes as (n2r×n1s). Hankel matrix for k = 1, H(0) is decomposed with SVD as  
 
 H(0) = UΣVT           (4) 
 
where, the sizes of U, Σ and VT are (n2r× n2r), (n2r×n1s) and (n1s× n1s) respectively. It is considered 
that H(0) has 2N non-zero singular values (i.e. rank=2N), equivalent to the order of state space system. 
Therefore H(0) can be recomputed as  
 
 H(0) ≈ U2NΣ2NV2N

T           (5) 
 
where, the sizes of U2N, Σ2N and V2N

T  are (n2r× 2N), (2N×2N) and (2N×n1s) respectively. The estimate 
of the discrete time state-space are obtained as follows 
 
 A = Σ2N

–1/2U2N
T H(1)V2NΣ2N

–1/2                    (6a) 
 
 B = Σ2N

1/2V2N
T E2                      (6b) 

 
 C = E1

TH(1)U2NΣ2N
1/2                      (6c) 

 
E1

T and E2, as appeared in the above equations, are defined as follows,  
 
 E1

T = [I 0 ⋯ 0]                        (7a) 
 
where, each sub-matrices (identity and zero matrices) is of the size (n2×n2).    
 

 E2 = ቎
I
0
⋮
0

቏                      (7b) 

 
where, each sub-matrices (identity and zero matrices) is of the size (n1×n1).    
 
2.2. Stochastic Subspace Identification (SSI) 
 
Next, SSI-DATA method (Van Overschee & De Moor 1996) is considered for evaluation of the modal 
parameters. The highlights of this identification technique are mentioned below. The output block 
Hankel matrix (consisting of 2i rows and j columns of output block sub-matrices) is represented in two 
forms as in Eqns. (8a) and (8b). 
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One of the key steps in SSI-DATA is projection. The projections are computed as in Eqns. (9a) and 
(9b). 
 
 Oi ≝ Y2 / Y1                       (9a) 
 
 Oi–1 ≝ Y2

– / Y1
+                       (9b) 

 
The SVD is computed next for the weighted projection, W1OiW2 as in Eqn. (10). Three different 
choices of algorithms are implemented in SSI-DATA based on three choices of weighting matrices for 
projection matrix: (a) unweighted principal component (UPC) algorithm, (b) principal component 
(PC) algorithm and (c) canonical variant algorithm (CVA) (Van Overschee & De Moor 1996).  
 
 W1OiW2 = UΣVT                                   (10) 
 
The order is determined inspecting Σ (suppose the order is 2N). Using the significant part of the 
decomposed matrices as in Eqn. (5), the extended observability matrix now is computed as in Eqn. 
(11). 
 
 Γi = W1

–1U2NΣ2N
1/2                     (11) 

 
Γi–1is found out with stripping the last l (number of outputs) rows from Γi and hence denotes the 
matrix Γi without the last l rows. Evaluation of the Kalman filter state sequences is carried out using 
the Eqns. (12a) and (12b). Here the symbol “†” represents the Moore-Penrose pseudo-inverse of a 
matrix.  
 
 X෡ i = Γi

†Oi                     (12a) 
 
 X෡ i+1 = Γi–1

† Oi–1                    (12b) 
 
The least-squares solution is carried out using the Eqn. (13) finally to compute an asymptotically 
unbiased estimate of A and C. 
 



  ቀA
Cቁ  = ቆX෡ i+1

Yi|i
ቇ .X෡ i

†                    (13) 

 
2.3. Frequency Spatial Domain Decomposition (FSDD) 
 
Both the techniques, FDD (Brincker et al. 2001) and FSDD (Zhang et al. 2010) are quite similar as 
they evaluate the modal parameters, except the treatment to the SDOF piece of PSD to identify the 
frequency and damping ratio. FSDD advocates for curve fitting while FDD considers the inverse 
Fourier transform. In this present work curve fitting is considered for frequency and damping ratio 
estimation.  Frequency domain decomposition is based on the formula, as mentioned in Eqn. (14), 
relating the output PSD as Gyy(ω), stochastic input PSD as Gxx(ω) and FRF matrix as H(ω). 
 
 Gyy(ω) = H(ω)Gxx(ω)H(ω)H                   (14) 
 
Ambient vibration is commonly modelled as white noise process and based on this assumption the 
PSD matrix becomes a constant matrix. Substituting the FRF matrix with the pole/residue form into 
the output PSD matrix, it also reduces to pole/residue form. Ultimately the output PSD matrix can be 
written as 
 

                Gyy
T (ω) ≈ φk ቈdiag(2Reቆ

ck

(√–1)ω–λk
ቇ )቉ γk

H                                                                              (15) 

 
where, k is the kth pole, ck is a scalar constant associated with the shape vectors as φk along with γk

 . 
Further by taking the SVD on the estimated output PSD at discrete frequencies ω = ωj , following 
expression can be obtained,  
 
 G෡ yy

T
(ωj) = UjΣjVj

H                                   (16) 
 
where, Uj and Vj are the unitary matrices, while Σj is the diagonal matrix consisting of scalar singular 
values. Observing Eqns. (15) and (16), it is observed that when the frequency approaches to a modal 
frequency k the kth mode shape dominates there and the first singular vector becomes an estimation of 
the kth mode shape.  
 
 
3. THE SARAIGHAT BRIDGE 
 
The Saraighat bridge is a simply supported rail-cum-road bridge which have 10 main spans and 2 
approach spans. The length of each of the main spans and approach spans are 118.72 meters and 31.4 
meters respectively. This is a steel truss double-deck bridge carrying the rail and road traffic at lower 
and upper deck respectively. A photographic view of Saraighat bridge is shown in the Fig. 3.1. 
 

 
 

Figure 3.1. Photographic view of the Saraighat bridge. 



All the spans are structurally uncoupled; hence modal identification is indeed required for each of the 
spans to complete the modal identification of the whole bridge. However the design of each of the 
main spans is similar and presently one main span is considered for modal identification.  
 
 
4. AMBIENT VIBRATION MEASUREMENT 
 
Data is recorded with uni-axial force balance accelerometers (EpiSensor ES-U2, Kinemetrics Inc., 
USA) and 48 channel dynamic data acquisition system (HBM GmbH Germany). Limited numbers of 
sensors are employed for ambient data recording. The locations are represented using the Fig. 4.1. 
where, a location associated to a number is chosen considering the level (top, middle or bottom) and 
left / right positioning following the direction 1 to 17. Letter ‘T’, ‘M’, ‘B’, ‘L’ and ‘R’ represent the 
top, middle, bottom, left and right respectively. A location associated to e.g. 8 at middle level and left 
side is represented as 8ML.   
 

 
 

Figure 4.1. Representation of the possible locations of sensors. 
 
Presently, 7 numbers of sensors are used at the locations: 9BL (transverse, vertical and longitudinal), 
9BR (transverse and vertical) and 8BL (transverse and vertical). Sensors at the location 8BL are 
considered as the reference channels.   
 
 
5. IDENTIFICATION OF MODAL PARAMETERS 
 
All three techniques are implemented using the same ambient vibration data. At first, NExT-ERA is 
implemented. In the implementation of NExT, first the PSD are computed and inverse Fourier 
transform is employed subsequently to evaluate the auto and cross correlation function. PSD are 
computed based on Welch’s method using hanning window function. ERA is then employed using the 
cross correlations to obtain the modal parameters. A stabilization diagram, which helps to identify the 
physical modes using various model orders, is generated and shown in Fig. 5.1. Range of model order 
in state space is considered from 20 to 100. The stabilization criteria are taken as: 1% for frequency, 
5% for damping, and 2.5% for mode shape. Meaning of the used symbols (plotted at left horizontally 
and vertically at centre) are: ‘f’ as pole with stable frequency, ‘d’ as pole with stable frequency as well 
as damping, ‘v’ as pole with stable frequency as well as mode shape, ‘s’ as pole with stable frequency  
as well as mode shape as well as damping and ‘+’ as new pole. The background curve is considered as 
the maximum of all the PSD curves for better displaying of the peaks. 
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Figure 5.1. Stabilization diagram based on NExT-ERA 
 
SSI (data driven) is implemented next. Out of the three available weighting schemes CVA is finally 
chosen since, it provides the better stabilization diagram for the considered set of data and considered 
signal processing parameters. Stabilization diagram based on SSI-DATA using CVA weighting 
scheme is shown in the Fig. 5.2. Physical modes are well observed from this stabilization diagram in 
the frequency range of 0–10 Hz. 
 

 
 

Figure 5.2. Stabilization diagram based on SSI-DATA. 
 
Finally, the FSDD is implemented for the modal parameter identification. The first three singular 
values of the PSD matrices at different discrete frequencies along with the identified damped 
frequency peaks are shown in Fig. 5.3.  
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Figure 5.3. First three singular values of PSD matrix along discrete frequencies. 
 
First ten numbers of frequencies are chosen considering all three techniques. The frequencies (Hz) and 
damping ratios (%) are shown in the table 5.1. It may be observed that the 4th frequency could not 
identified using the singular value plot as in the Fig. 5.3. Further, the 7th frequency identified using the 
SSI is not identified using NExT-ERA as well as FSDD.  
  
Table 5.1. Identified frequencies and damping ratios 
 NExT-ERA SSI FSDD 

Frequency(Hz) Damping 
Ratio (%) 

Frequency(Hz) Damping 
Ratio (%) 

Frequency(Hz) Damping 
Ratio (%) 

1. 0.8684 0.0500 0.8802 0.0501 0.8944 0.0070 
2. 1.8608 0.0219 1.8490 0.0297 1.8650 0.0048 
3. 2.0380 0.0130 2.0262 0.0086 2.0506 0.0074 
4. 2.9832 0.0286 2.9360 0.0255 - - 
5. 3.0896 0.0069 3.0777 0.0313 3.0646 0.0049 
6. 4.4515 0.0122 4.4246 0.0076 4.3874 0.0037 
7. - - 4.6491 0.0248 - - 
8. 5.1099 0.0060 5.2044 0.0085 5.2356 0.0030 
9. 6.7639 0.0033 6.7758 0.0068 6.7477 0.0012 
10. 7.0357 0.0029 7.0357 0.0038 7.0092 0.0014 
 
Observing the mode shape behaviours along transverse and vertical directions at the locations 9BL and 
9BR, it is reasonably concluded that 1st frequency (0.8684 Hz) and 2nd frequency (1.8608 Hz) 
represent the 1st transverse and 1st vertical modes. Subsequently, the MAC is evaluated between the 
pairs of the three different techniques corresponding to the identified frequencies. Evaluated MAC 
values are shown in table 5.2. 
 
Table 5.2. MAC values between identified mode shapes using three techniques. 
 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
NExT-ERA/SSI 0.9970 0.9768 0.8936 0.6318 0.9787 0.6833 - 0.6732 0.8255 0.9790 
NExT-ERA/FSDD 0.9949 0.9971 0.9336 - 0.9240 0.6640 - 0.7092 0.9489 0.9129 
SSI/FSDD 0.9977 0.9613 0.7243 - 0.9778 0.9426 - 0.8349 0.8002 0.9405 
 
From the table 5.2, it can be roughly stated that MAC values show reasonable agreement at different 
frequencies.  
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6. CONCLUDING REMARKS 
 
Both the time and frequency domain techniques have been employed for identification of the modal 
parameters of the Saraighat Bridge. Ambient vibration data in form of acceleration response is used 
for the modal identification. Following conclusions are made based on the observations of the 
identified modal parameters of this Saraighat Bridge.  
 

(i) Identification of all the modes may not be possible using a single identification technique. 
Hence, employing multiple techniques could be considered for better modal parameter 
identification.  

(ii) The frequencies identified using three different techniques show less dispersion.  
(iii) On the other hand, the identified damping ratios show higher dispersion. Damping ratios 

found using NExT-ERA, are matching reasonably with those obtained using SSI. 
However damping ratios found using FSDD are not in good agreement with those 
obtained using previous two methods. 
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