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SUMMARY

This paper presents a study to estimate the averaged horizontal peak ground acceleration (PGA) of strong motion
data from Japan using Artificial Neural Network (ANNs), as a tool to remove uncertainties in attenuation
equations. The input variables used in construction of ANNs model were magnitude, hypo-central distance, fault
type, average shear wave velocity and output parameter was PGA. By using Back Propagation (BP) algorithm,
75 % of respective dataset was used to train the ANNs model and remaining 25 % data were used for validation
and testing purpose. Data set kept for testing is then used to check the performance of neural network by making
appropriate statistics. The result showed that the graph between predicted PGA values by network and observed
PGA values give high correlation coefficient value (i.e. R). To show the authenticity of this approach, estimated
value of PGA by ANNs model was compared with one of the regression model, and results show that ANNs is a
valuable approach for prediction of PGA at a site.
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1. INTRODUCTION

Earthquake ground motions are affected by several factors including source, path, and local site
conditions. These factors are considered in engineering design practice through seismic hazard
analyses that normally use attenuation relations derived from strong motion recordings to define the
occurrence of an earthquake with a specific magnitude at a particular distance from the site. Knowing
the characteristics of ground motions in a specified region is vital for the design of engineering
structures. Loading conditions appropriate for a particular type of structure are expressed in terms of
ground motion. Peak ground acceleration (PGA) is commonly used to define the ground motions, most
of the times it is estimated by the attenuation relationships which are developed using regression
analysis of strong ground motion recorded during previous earthquakes. In the regression analyses, the
PGA is generally calculated as a function of independent variables like magnitude, source to site
distance, local site conditions, type of faulting and wave propagation (Kramer, 1996; Douglas, 2003).
However, these independent variables generally present uncertainties in the construction of database
for the recording station, because they often oversimplify reality. Beside these uncertainties, the
shortcoming of the modelling and the analysis technique of regression used strongly effect the
predictive equations such that different coefficients of independent variables may be obtained. These
uncertainties due to both physical aspects as well as computational aspects lead to significant residuals
between the estimated PGA from the predictive equations and the observed value measured at
particular site. Therefore, these predictive equations had limited ability to predict the observed PGA
value.

On the other hand a soft computing technique known as Artificial Neural Networks (ANNs) can be
used to remove uncertainties in predictive equations. Since ANNs are not defined as a specific
equation form, they can infer solutions to problems having nonlinear and complex interaction among
the variables and find functional relationship between the input and output of dataset. In recent years
many authors used ANNSs as a tool to predict the characteristics of strong ground motions. Ghaboussi



and Lin (1998) used ANNs as a tool to generate spectrum compatible accelerograms from response
spectra. Lin and Ghaboussi (2001) applied stochastic Neural Networks to generate multiple spectrum
accelerogram from response spectra or design spectra. Pandya et al. (2002) have used ANN to predict
site-specific response spectra. Lin et al. (2002) used Neural Network to estimate the damage in bridges
after major earthquake in Taiwan. Tehranizadeh and Safi (2004) used ANN model based on back
propagation as a tool to obtain appropriate design spectra for different site conditions using more than
2000 ground motion records of Iran. Giillii and Ercelebi (2007) used ANN to predict PGA using
strong motion data from using Fletcher Reeves conjugate back propagation. Giinaydin et al. (2008)
used feed forward back propagation algorithm to predict PGA using moment magnitude, hypocentral
distance, focal depth and site condition as inputs parameter for north western Turkey. Arjun and
Kumar (2009) have used ANN to predict PGA using six input variable as magnitude, Hypocentral,
average SPT blow count, average primary wave velocity, average shear wave velocity and average
density of soil. So we have found that many researcher in the past used ANN as tool to predict site
specific response spectra, and PGA.

In present study, an attempt has been made to estimate the averaged horizontal peak ground
acceleration of strong motion as a function of earthquake magnitude, source to site distance, fault type
and averaged shear wave velocity using Artificial Neural Network (ANNs). The database used in
present study is taken from Kyoshin net (K-NET) database of Japan The input variables used in
construction of ANNs model were magnitude, hypo-central distance, average shear wave velocity
(Vs), fault type (i.e. Normal, Reverse and Strike slip) and output parameter was PGA. By using back
propagation algorithm (BP), 75% of respective dataset was used to train the ANNs model and
remaining 25 % data were used for validation and testing purpose. Data set kept for testing is then
used to check the performance of each neural network by making appropriate statistics. The result
showed that the graph between predicted PGA values by network and observed PGA values give high
correlation coefficient value (R). To show the authenticity of this approach, estimated value of PGA
by ANNs model was compared with one of the regression model, and results show that ANNs In
valuable approach for prediction of PGA at a site.

2. ARTIFICIAL NEURAL NETWORK

Artificial Neural Networks (ANNs) are computational models derived from the biological structure of
neurons which imitate the operation of human brain. Artificial Neural Networks are nonlinear
information (signal) processing devices, which are built from interconnected elementary processing
devices called neurons. ANNs like people learns by data examples presented to them in order to
capture the fine functional relationship among the data even if underlying relationships are unknown
or the physical meaning is difficult to explain. It has advantaged over the most traditional empirical
and statistical model, which require prior information about the nature of the relationships among the
data.

Back propagation algorithm (Hertz et al., 1991; Zurada, 1992; Haykin, 1999) is the most popular
Neural Networks used particularly for prediction applications and data modelling. GE Hinton,
Rumelhart and R.O. Williams first introduced Back propagation network (BPN) in 1986. Back
propagation is a systematic method for training multi-layer artificial Neural Networks. It is a
multilayer forward network using extend gradient-descent based delta-learning rule, commonly known
as back propagation (of errors) rule. Back propagation provides a computationally efficient method for
changing the weights in a feed forward network, with differentiable activation function units, to learn
a training set of input-output examples. Being a gradient descent method it minimizes the total squared
error of the output computed by the net. The network is trained by supervised learning method. A
typical structure and operation of multilayer Feed Forward Neural Network with back propagation
algorithm as shown in Fig. 1. For Feed Forward Neural Network (FFNN), which is the most
commonly used ANN; processing units are usually arranged in layers. Each network has an input
layer, an output layer and one or two hidden layer. Each processing unit in a specific layer is fully or
partially connected to many other processing units in different layer via weighted connections. No
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Figure 1. Typical structure of ANN Figure 2. Processing unit of ANN
(Shahin et al., 2001) (Shahin et al., 2001)

connection is allowed between the processing units within a same layer. The scalar weights determine
the strength of the connections between interconnected neurons. A zero weight refers to no connection
between two neurons and a negative weight refers to a prohibitive relationship. From many other
processing units, an individual processing element receives its weighted inputs, which are summed and
a bias unit or threshold is added or subtracted. The bias unit is used to scale the input to a useful
range to improve the convergence properties of the Neural Network. The result of this combined
summation is passed through a transfer function (like logistic sigmoid or hyperbolic tangent) to
produce the output of the processing unit. For node j, this process is summarized in Eqs. land 2
(Shahin et al., 2001) and illustrated in Fig. 2.
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where I; = the activation level of node j ; Wj; = the connection weight between nodes j and i; x; = the
input from node I, i=0,1,.....,n ; 6; = the bias or threshold for node j ; y; = the output node j ; and f(I;)=
the transfer function. The propagation of information in FFNN starts at the input layer where the input
data are presented. The inputs are weighted and received by each node in the next layer. The weighted
inputs are then summed and passed through a transfer function to produce the nodal output, which is
weighted and passed to processing units in the next layer. The network adjusts its weights on
presentation of a set of training data and uses a learning rule until it can find a set of weights that will
produce the input-output mapping that has the smallest possible error. The above process is known as
'learning' or 'training'.

3. STRONG MOTION DATA (JAPANESE DATA)

In this study, the strong ground motion data of Japan was utilized for the ANN application to predict
PGA. Kyoshin Net (K-NET) database of Japan provides one of the most extensive records of various
features of strong ground. Kyoshin Net is a dense strong-motion networking consisting of over 1,000
observatories deployed all over Japan at free-field sites at intervals of approximately 25 km covering
the country with instruments located on ground surface. Each station has a digital strong-motion
seismograph (accelerometer) with a wide frequency-band and wide dynamic range, having a
maximum measurable acceleration of 2000 Gals. We started working with 2, 19,050 (only horizontal
component) time histories from 3471 earthquakes recorded at different locations in Japan. All K-NET
data is openly available on registration through their Web-site (http://www.k-net.bosai.go.jp,). Out of
above we obtained 1355 averaged horizontal components of records having magnitude varying
between 5 to 8, hypocentral distance of 200 Km or less, focal depth of 35 km or less , PGA of 5 gals or
more and recorded at stations having average shear wave velocity (V) between 180 and 1200 m/sec.




The average values of shear wave velocity of soil have been done as per FEMA 356, 2000. This value
was calculated using eq. (3):
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Where Vg = Shear wave velocity of i layer; d.= Depth of the i™ layer; n = Number of layers of

similar soil materials for which data is available.

Source mechanisms of these earthquakes are taken from (http://www.fnet.bosai.go.jp) and type of
faulting (i.e. Normal, Reverse and Strike Slip ) is assign to each earthquake using tectonic map of
Japan. Distributions of JMA magnitude of the data used with (a) Hypocentral distance and (b) PGA
are shown in Fig. 3 and Fig. 4 respectively.
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Figure 3. Distribution of JMA Magnitude with respect to Hypo-central Distance.
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Figure 4. Distribution of PGA w.r.t JMA Magnitude.

4. DEVELOPMENT OF ANN MODEL

Steps shown in Fig. 5 are used for the development of ANN model to predict PGA by implementing
multilayer feed forward Neural Network with BPN learning scheme using Japanese earthquake.



4.1. Forming inputs and outputs

The most important step in ANN modelling problem before training any network particularly for the
back propagation is the selection of inputs and outputs since it has significant impact on model
performance (Kaastra and Boyd, 1995). In present study ANN algorithms were composed of 4 inputs
parameters (magnitude, hypo-central distance, type of faulting and averaged shear wave velocity) in
the input layer and one output parameter (PGA) in the output layer. Here we assign the numbers to
type of faulting for Normal-1, Reverse-2 and Strike Slip-3. Entire dataset comprised of 1355 averaged
horizontal components of earthquake records is classified into three categories (Stone, 1974):- (1) The
training set, (2) The validation set, and (3) The testing set. The training set, which consisted of about
75 % of the data set, is used to train the network by adjusting the connection weights; the validation
set, which is about 10 % of the data set, is used for the purpose of monitoring the training process at
various stages and to guard against overtraining. The testing set, which is taken about 15 % of the data
set, is used to judge the performance of the trained network.

Data Preparation
Data Pre-processing

Designing

Training

Testing

Figure 5. Steps used for development of ANN model

4.2. Pre-processing of data

Neural Networks works only with numeric data and numeric values should be scaled before feeding
them to the network input, because artificial neurons have a limited range of operating value.
Therefore we modify the data before it is fed to a Neural Network which is known as preprocessing of
data. The objective of preprocessing the input data is to reduce its dimensionality and simplify the
patterns to be recognized in order to avoid a huge amount of computation and to improve the
network’s generalization ability. In preprocessing the whole inputs parameters is converted in the
scaling range of -1 to 1 and output parameter is converted in the scaling range of 0 to 1.

4.3. Search for the Finest Network

To search for finest network hit and trial method is used. Initially a large numbers of architecture were
taken on trial. Criteria used to filter out the best architectures were correlation coefficient and network
error. For given dataset, the search for finest network was performed in various steps. In the first step,
an exhaustive search has been made among a large array of networks with a single and double hidden
layer with different number of hidden neurons. From that search, the best performing five architectures
were chosen on the basis of correlation coefficient. In the second step, the chosen architecture is then
trained for higher number of epochs with different momentum and learning rate. In the third step the
best performing network in terms of correlation coefficient and network error from the chosen
architecture are once again trained for increasing number of epochs, the training is stopped when the
validation error is minimum in order to obtain the suitable network model. The correlation coefficients
(R) and the network error used to evaluate the accuracy of each model are defined as
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where X; is observed PGA value at i" record, Y; is predicted PGA value at i record, n is total number
of testing data, ¥ and ¥ is the mean of X; and Y; respectively. The correlation coefficient (R) is a
statistical measure of strength of the relationship between the actual values and network outputs. The R
can range from -1 to +1. The closer R is to 1, the stronger the positive linear relationship, and the closer
R is to -1, the stronger the negative linear relationship. When R is near 0 there is no linear relationship.
Network error is a value in terms of Sum of Squares, it is used to rate the quality of the Neural Network
training process. The smaller the network's error is, the better the network has been trained.
Minimization of the error is the main objective of Neural Network training. Sum-of-Squares is the most
common error function and is the sum of the squared differences between the actual value (target
column value) and Neural Network output.

4.4. Training and Testing of ANN models

ANN model with four nodes in the input layer and one node in the output layer has been created. The
four nodes of the input layer represent the earthquake magnitude (M), hypo-central distance (H), type
of faulting and Averaged shear wave velocity (Vs). A set of 1152 was selected randomly from the total
set of 1355 for training and cross validation and the remaining 203 was used to test the performance of
the trained networks. An exhaustive search has been done for the single hidden layer and the double
hidden layer, and then the best five architectures based on correlation are selected for training as
shown in Table 1.

Two Hidden Layers

Table 1. Architecture exhaustive search results Inputs Output

Architecture  Epochs  Correlation Magnitude (M)
440-17-1 5000 0956885 .
4-29-25-1 5000 0.95121
18-33-25-1 5000 0.950632 Fault Type PGA
18-21-40-1 5000 0.939185
18-31-13-1 5000 0.938564 Vs

Figure 6. ANN architecture (4-40-17-1).

Architectures shown in Table 1 are further trained with different momentum, learning rate and for
different number of epochs. It has been found that the network with 40, 17 hidden neurons in the first,
second hidden layer (4-40-17-1) shown in Fig. 6 had the best performance with better correlation and
minimum network error. The various parameters used for training this network are shown in Table 2.

The network was then further trained for 15500 epochs and finally test dataset was used to check the
performance of the trained network. Network result for 15500 epochs is shown in Table 3.
Comparison between the predicted PGA and true PGA is shown in Fig. 7. The percentage error is

given by Percentage Error = [| (Network V. - Actual V, )| /| Actual Vi|] x 100(%).

Table 2. Parameters for Neural Network.

Description Hidden Layer  Output Layer

Transfer Function TanhAxon SigmoidAxon
Learning Rate 0.15 0.15
Step Size 1.0 1.0

Momentum 0.9 0.9




Table 3. Network results for the given dataset.

Architecture  Epochs Correlation Network error
18-38-23-1 15500 0.944317 0.000369
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Figure 7. Scatter Plot of Predicted PGA Vs Observed PGA.

To evaluate the efficiency of the model, the results obtained from the entire dataset is categorized as: -
Accurate: Results with percentage error less than 5%; Substantially Accurate: Results with
percentage error in the range of 5 to 10 % ; Moderately Accurate: Results with percentage error in
the range of 10 % to 20 % ; Incorrect: Results with percentage error more than 20 %. The efficiency
of the results have been described in form of statistics are shown in Fig. 8,

From the results presented above the following observations are made:
1. The PGA predicted by ANN for given dataset has is high as about 40 % Substantially Accurate.
2. It is seen from the test results that major of the incorrect results are for a PGA of less than 20
Gals.
3. It can therefore be concluded that ANN cannot predict lower peak ground accelerations
correctly from the above trained network.
4. Careful selection of data may significantly improve the performance of the trained network.

Figure 8. Efficiency of 4 input based network for prediction of PGA.



5. ESTIMATION OF PGA USING ATTENUATION RELATIONSHIPS.

In this section of work PGA is estimated by the previously developed attenuation relationships, to
compare the results obtained from the above ANN network and attenuation models considered are
based on the independent parameters used. The attenuation models considered for the estimation of
PGA are (1) Boore and Atkinson (2008) and (2) Fukushima & Tanaka (1990). The independent
parameters in Boore and Atkinson (2008) model are Magnitude, Joyner Boore distance Rz, Average
shear wave velocity, and Fault type. Where as in Fukushima & Tanaka (1990) only Magnitude and
Hypocentral distance are considered.

Ground motion model considered by Fukushima & Tanaka (1990) is:
logA = aM — log(R + ¢10™™) — bR +d (5)

where A is incms %, a=0.41, b= 0.0034, ¢ = 0.032, d = 1.30 and 5 = 0.21. Fig. 9 shows the Estimated
PGA for the varying distance using Fukushima Attenuation Model.

Fukushima et al. (1990)
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FIGURE 9. Estimated PGA with distance.

Equation for predicting ground motions using Boore and Gail Atkinson(2008) is:

In Y= Fy(M) + Fp(R;,M)+ Fs(Vzo,R M) +e0 1, (6)

In this equation, Fy, Fp, and Fg represent the magnitude scaling, distance function, and site
amplification, respectively. M is moment magnitude, Rz Joyner-Boore distance (defined as the
closest distance to the surface projection of the fault), and the velocity Vg is the inverse of the
average shear-wave slowness from the surface to a depth of 30 m. The predictive variables are M, R,
and Vg;; the fault type is an optional predictive variable that enters into the magnitude scaling term.
Fig. 10 shows the Estimated PGA for the varying distance using Boore and Atkinson Model. Table 4
shows the value of correlation coefficient find for ANN network and regression models. The
efficiency of Fukushima et al. (1990) as well as Boore et al. (1990) attenuation model to predict PGA
have been calculated and shown in the form of statistics in Fig. 11.

Table 4. Comparison of Correlation using ANN and Regressions Models
Correlation ANN Fukushima et  Boore & Atkinson
al. (1990) (2008)
R 0.944317 0.5391 0.6517




Boore and Atkinson (2008)

1000

PGA (Cm /Sec?)

> @', "@O @(9 O Mag7.0
SN &

NgoN o O Mag6.5
10 2 V'b%\""?’
R
< 3

. 0290 \008 A Mag6.0
X

A © Mag55
\.

1 10 100 1000

Distance (Km)

Figure 10. Estimated PGA with distance.
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Figure 11. Comparison of Statistics for ANN and Regression Model.

It is clear from Fig. 11 , the ANN predict PGA value is high as about 40 % substantially accurate
where as Fukushima et al.(1990) model predict incorrect PGA value is high as about 64 %.It may be
noted that Fukushima et al.(1990) attenuation relationship do not consider the effects of fault types
and site characteristics, Where as Boore et al. (2008) consider all for four independent parameters (
magnitude, distance, fault type and shear velocity ) to estimated the PGA which we used as inputs in
ANN Network ,still it’s predict inaccurate PGA value is high as about 40 %.

CONCLUSIONS

ANN can successfully predict the PGA vales with a margin of error within acceptable limits. Its seems
that from the test results that major of the incorrect ANN results are for PGA of less than 20 gals or of
lower cut off values. Therefore careful selection of data may significantly improve the performance of
the trained network. The correlation obtained from Attenuation models are compared with ANN
developed models, correlation for ANN models is as high as 0.944317, whereas correlation
coefficients for Boore et al. (2008), and Fukushima et al. (1990) are found as 0.6517 and 0.5391,
respectively.
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