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SUMMARY: 
The field of hybrid simulation has been limited to use fairly simple numerical models (consisting maybe 
of an order of ten Dynamic Degrees of Freedom DDOF), since the largest and most complex ones were 
out of reach mainly due to hardware limitations. The presence of multi-core desktop computers and the 
use of high performance computers together with the still in development European Platform for 
Geographically Distributed Seismic Tests can increase the number of available DOF for continuous and 
also real time hybrid simulation. This paper gives an overview of the ongoing work within SERIES to 
assess the extensibility of such platform to large and complex numerical models.  
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1. INTRODUCTION 
 
The increase in computational power of desktop computers has broadened the horizons of 
hybrid simulation. By using parallel approaches when programming the sub-structure algorithm, 
in this case the sub-structure algorithm developed by Dorka (Roik (1989) and Dorka (1991, 
1998, 2002, 2006, 2007), larger numerical models can be used not only in continuous hybrid 
simulation but also in real-time tests. 
 
However, the largest models consisting of several thousands of dynamic degrees of freedom are 
still out of reach since it would still require too large step times in order to integrate them in 
continuous tests. The solution is conceptually easy: use more powerful computers; that is a 
supercomputer or a Linux cluster. Unfortunately, only a handful of laboratories would be able to 
satisfy the computational requirements on-site. This is where the still in development European 
Platform for Geographically Distributed Seismic Tests within the SERIES (2012) project comes 
into play. By combining the different ingredients; a parallel programming approach, high 
performance computers and distributed testing, much larger models could be used in the context 
of hybrid simulation. 
 
 
2. DORKA’S SUB-STRUCTURE ALGORITHM 
 
One of the key components of the previously commented mixture for using large numerical 
models in continuous or even real-time hybrid simulation is the substructure algorithm 
developed by Dorka. It has been successfully applied to a wide variety of situations, both from 
the civil engineering point of view and the aerospace engineering field as shown in Bayer 
(2005). 



2.1. Basic Formulation 
 
The underlying layer of the substructure algorithm is a discrete formulation of the dynamic 
equilibrium equation, which is given by: 
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Where M, C and K are respectively the mass, damping and stiffness matrices of the numerical 
model and u and p(t) are the displacement and loading vector. The terms of fr (numerical non-
linear restoring force) and fs (force measured at the interface between numerical model and 
substructure specimen) take care of the restoring forces. 
 
A general solution of the previous equation can be obtained, if a finite element discretisation in 
the time domain and shape functions with three supporting points1 (3-step scheme) as in 
Zienkiewicz (1977) are used. It is worth to point out that nearly all major time stepping 
algorithms can be obtained, if different weighting functions are used when performing the time 
integration. If the displacement is discretised in the time domain, Eqn. 2.1 results into: 
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Where f* = fr + fs + p, u is the discretised displacement vector in the time domain, the term Ke is 
the effective stiffness matrix, feff the effective load vector and fe is the error force (see 2.1.2). The 
super-index n is used to differentiate the time steps. The abbreviations introduced are: 
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The different parameters such as time intervals, stability, accuracy and numerical damping are 
analysed in a deeper way in Dorka (2002). It can be concluded that the only unconditionally 
stable implicit 3-step algorithm without artificial damping and with the least numerical 
softening is the so-called Newmark-β, with γ = 0,5 and β = 0,25. 
 
2.1.1. Sub-stepping 
In Eqn. 2.2, there is also the term fs

n+1 (inside f*
n) which takes care of the reaction of the 

subsystem. Since it is only available through measurement, the use of iteration methods will 
lead to high frequency oscillations during a test. To deal with this problem, a sub-stepping 
approach has been used. In Dorka (2002) the next equation, Eqn. 2.5, the implicit algorithm is 
expressed as a form of a general linear control equation within each time step. 
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Where u0 is the initial vector (updated at the beginning of the time step) and fr, fs the calculated 
and measured force vectors respectively. Applying a sub-stepping technique, the displacements 
present in Eqn. 2.5 are introduced to the specimen in small increments as specified in the ramp 
function, forming the inner loop in Fig. 2.1b: 

                                                      
1 The formulation can also be extended to four supporting points. 
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Where ksub is the number of sub-steps and i denotes the current sub-step. In this way, for each 
sub-step i, the displacement of the subsystem is computed, applied to the test and then the 
measured or the calculated non-linear restoring forces are given as an input to the algorithm. 
 
2.1.2. Error force compensation 
The number of sub-steps ksub (Fig. 2.1a) is an important factor for stability and accuracy (when 
ksub → ∞ Eqn. 2.5 and Eqn 2.6 give the exact value), but there are also other sources like 
positioning error of the actuators, that can make the test unstable. In order to minimise their 
effect and their tendency to destabilise the test, a PID compensator is used to minimise the error: 
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Where e is the equilibrium error defined as the sum of all dynamic forces, whether they are 
internal or external, at the end of the time step. P, I and D are the adequately chosen 
proportional, integral and derivative constants of the error compensator, and fe

n is the 
compensation force, which is added at the beginning of the next step as a load to the system. 
Fig. 2.1b summarises how the algorithm runs in displacement control.2  
 

 
Figure 2.1. Substructure algorithm developed by Dorka. 

 

                                                      
2 It is possible to formulate it also in velocity and acceleration control. 
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 (b) – flow chart of substructure algorithm 



3. PARALLELISATION OF THE SUB-STRUCTURE ALGORITHM 
 
This section will introduce two different approaches of using a parallel version of Dorka’s sub-
structure algorithm. The first one is using a shared memory approach on regular desktop (or 
laptop) computers, while the second one is targeted at distributed memory computers 
(computers with multiple processors connected through a network). 
 
One of the most interesting aspects of this sub-structure algorithm is the possibility to perform 
the costly operations, like the matrix inversion, before the test starts. This leaves all the 
operations during a test of the type vector scaling (which is an embarrassingly parallel problem 
since it requires no communication across multiple processors), vector addition and matrix-
vector multiplication. 
 
3.1. Parallelisation on desktop computers 
 
Parallel programming in multi-core computers usually follows the shared memory approach, 
that is, different processes or cores share the same memory. In this approach, the work is 
divided among the different cores or processes through a thread. There are several libraries that 
provide this functionality, being Open Multiprocessing (OpenMP, Chapman et. al (2008)) or 
POSIX Threads (Pthreads) the most popular of them. However, it is not recommended to use 
these libraries directly if not to do the simplest task or if there is no alternative without a good 
knowledge on parallel programming. The reasons: lack of experience and knowledge translates 
into poor performance and it is time consuming. 
 
Some linear algebra operations are so common that several libraries have risen in order to avoid 
having to program routines such as matrix-vector operations over and over again. Perhaps the 
most widely adopted of these libraries are the BLAS (Basic Linear Algebra Subroutines) 
(Lawson (1979)) and LAPACK (Linear Algebra PACKage) (Anderson (1999)). While the first 
covers vector, matrix-vector and matrix-matrix operations, the second provides means to solve 
linear systems or matrix inversions and relies upon BLAS for the aforementioned basic 
operations. Another advantage of using BLAS and LAPACK is that they allow parallelising the 
program easily. Most of the implementations of such libraries, like ATLAS from Whaley and 
Petitet (2005), MKL from Intel or OpenBLAS, offer different degrees of parallelisation and the 
ability to use multiple cores and threads. 
 
Therefore, parallelising the algorithm would simply require the use of multithreaded 
implementation of such libraries, relegating OpenMP or Pthreads to a minor role. Dealing with 
TCP/IP communication with the controller or with multiple sub-structures, real or numerical, 
simultaneously are examples of where OpenMP or Pthreads could be useful. Fig. (3.2) shows a 
benchmark of the version of the sub-structure algorithm using different BLAS implementations: 
the single-threaded reference BLAS, ATLAS, OpenBlas and Intel MKL. It is worth saying that 
the operations performed were done considering symmetrical matrices and single precision 
(float in C) due to the limitations of the controller at the University of Kassel. 
 
As can be seen in the graphs, the implementation of the BLAS library used has a huge impact 
on performance. The most important information that this figure offers is, however, the 
approximate limit of the size of the matrices for a given step time in a continuous or a real-time 
test. It is worth to notice that since the actuator needs to move continuously, the data must be at 
the controller after the last sub-step (to measure the coupling force) but before the beginning of 
the new sub-step (to move the cylinder without stop). This leaves a window time of ∆t/k – 
communication time, where ∆t is the time step and k is the number of sub-steps. Therefore, for a 
real-time test the maximum matrix size would be around 2000 for a Intel Core i7 950 (10 ms 
step, 2,5 ms sub-step against 2,0 ms for computing and 0,4 ms communication time with ADwin 
Jäger (2010), the controller). 
 



 
 

Figure 3.2. Benchmark of the algorithm for different matrix sizes. 
 
 
 



It is possible however to increase the performance of the sub-structure algorithm by using 
sparse operations instead of taking the usual approach of considering dense matrices. Although 
the improvement would depend then upon the density of the matrices (percentage of non-zero 
elements), Fig 3.2 can also give an approximate idea of the performance boost using the sparse 
BLAS implementation of the Intel MKL library and a matrix density of 11%. 
 
3.2. Parallelisation on multiple processors 
 
But what if there are several available processors connected through a network (a cluster or a 
supercomputer)? BLAS and LAPACK libraries cannot be scaled through multiple nodes (a node 
is a processor with either a “single” or multiple cores). Since the same applies to OpenMP or 
Pthreads, other libraries are required. Message Passing Interface (MPI, Gropp et. Al (1999)) 
fulfils the necessities, but as well as programming with OpenMP the results can be far from 
satisfying from the performance point of view without some good knowledge on parallel 
programming. 
 
This is solved through the use of Scalable Linear Algebra PACKage (ScaLAPACK) in 
Blackfort (1997) and Parallel BLAS (PBLAS) in Chor (1995) and Petitet (1996), which are the 
linear algebra libraries for distributed memory computers. The communication aspects are also 
hidden from the end user through the BLACS library (Chor et al (1995), Dongarra and Whaley 
(1995)). Having more processors available, allows for more aggressive parallelisation of the 
substructure algorithm. One possible example is the one shown in Fig. 3.1, which features a 
good load balancing. 
 

 
 

Figure 3.1. A possible parallel implementation of Dorka’s substructure algorithm. 
 
 
 



4. FURTHER VALIDATION AND TEST SETUP 
 
Different approaches will be used in order to validate both, real-time and continuous distributed 
sub-structure testing using large numerical models. In the first of them, the real-time approach, a 
fairly detailed model (504 DOF) of a three-storey steel frame will be used. This non-
symmetrical steel frame used during the DFG project “Sub-shake” was initially condensed to 33 
DOF in order to be able to run a real time test (Fig 4.1). Due to this, eigenfrequency shifts were 
introduced starting in the 2nd mode as discussed in Khanlou (2011). It is suspected that this 
deviations lead to major differences, between the reference and the substructure test, in the 
frequency domain. 
 

 

 
 

 
Figure 4.1. Three-storey steel frame with a TMD and a UHYDE-fbr (Dorka 1995) on the shake table at 

IZIIS during the DFG “Sub-shake” project (top) and numerical model (bottom). Pictures from Khanlou et 
al (2011) 

 
 
 



On the sub-structuring side, the shake table in the University of Kassel will be used (Fig 4.2 
bottom). Two actuators controlled by ADwin (a system capable of multi-tasking and in charge 
of the sub-stepping process) will be responsible for introducing the displacements coming from 
the numerical model. The friction device by Dorka (1995), the UHYDE-fbr (Fig 4.2) will be 
tested in both configurations: no air pressure (making the TMD linear) and with air-pressure 
(non-linear TMD), where it would dissipate energy through solid friction. This situation would 
allow comparing the influence of large numerical models in conjunction with both linear and 
non-linear test set-up using a real specimen as a reference. As can be seen in Fig. 4.2, through 
the UHYDE-fbr, ideal elasto-plastic behaviour can be achieved and through varying the air 
pressure in the chamber, different hysterises loops can be applied. 
 

 

 
 

Figure 4.2. Test setup at University of Kassel (top) as in Khanlou et al (2011), concept of the UHYDE-
fbr (bottom left) as in Dorka (1995), and hysteretic behaviour (bottom right) as in Bossi (2003) 

 
On the geographically distributed continuous test side, much larger models will be used (Fig. 
4.3). Two facilities will be involved: the numerical facility (the Linux Cluster at the University 
of Kassel) and the experimental facility (the shake table in the laboratory). Both facilities have 
to be in constant communication since for the sub-stepping process, the coupling part of the 
vector u0 is required. In order to perform such tests, both the numerical models and the test set-
up will need to be modified. In the second case, the TMD would require to be disabled since in 
time-scaled tests, its dynamic behaviour cannot be captured. This would leave the friction 
device as the only element in charge of dissipating energy. On the other hand, the numerical 
models will have the friction-device installed in the concrete cores of the buildings through 
coupling nodes. 
 



 
 

Figure 4.3. On the left: The Contribution of Middle East Technical University and BLA Associates, 
Atlanta, GA.. On the right: Models contributed by the Technical University of Istanbul. Both in the 

SERIES project 
 
 
5. CONCLUSIONS AND FURTHER WORK 
 
The use of large numerical models in both real-time and distributed continuous hybrid 
simulation will be studied and verified. The use of more detailed numerical models is expected 
to provide much better accuracy in the results on non-symmetrical structures. One one hand, 
this is possible in a major part due to the use of Dorka’s sub-structure algorithm, which allows 
running the hydraulic cylinder in a continuous fashion thanks to the approach taken during the 
sub-stepping process: a linear control equation. On the other hand, the increase of the 
computational power in common desktop computers and the use of high performance libraries, 
or the more powerful Linux-clusters or supercomputers that many universities have, allows 
running large numerical models in hybrid simulation. 
 
While the computing side is mainly finished, there are still some questions that further work 
will try to address. The influence of higher modes in the results, when more detailed numerical 
models are needed or what are the parameters that one should control in order to have an 
acceptable level of detail in the models are possible outcomes of these studies. 
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