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SUMMARY: 
In unreinforced masonry (URM) walls the vertical piers are connected by horizontal spandrel elements. These 
spandrel elements considerably affect the global wall behavior when subjected to seismic loading. Modeling of 
masonry walls without fully understanding the effect of spandrels can lead to erroneous results. Despite the 
importance of spandrels, the coupling action of spandrels is often neglected in design codes mainly due to the 
scarcity of experimental data on masonry spandrels and the absence of proper mechanical models. For the 
realistic seismic design of new buildings and assessment of existing buildings, mechanical models for masonry 
spandrels are required. In this study, numerical investigations are carried out based on the simplified micro-
modeling approach using the ATENA software package. In the simplified micro-model, each brick is modeled as 
a separate unit and the mortar joints are represented by contact elements. The results of the numerical analyses 
are verified against experimental data from masonry spandrel tests. It is found that the results from numerical 
studies are in good agreement with the experimental values. The numerical model is then used to conduct a 
parametric study on the peak strength of the masonry spandrels with shallow arches. 
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1.  INTRODUCTION 
 
In unreinforced masonry (URM) walls, the vertical piers are connected by horizontal elements called 
spandrels. Recent earthquakes (e.g., L’Aquila, 2009, Fig. 1) have shown that the spandrel elements are 
often the first elements to crack or fail in a URM building under seismic loading. In spite of its 
importance, the framing action of the spandrel elements is neglected and only the vertical pier 
elements are considered while calculating the strength and the stiffness of the URM walls (Beyer and 
Dazio, 2012). Various researchers (Magenes, 2000; Beyer and Dazio, 2011) have pointed out that the 
spandrel elements considerably affect the force-deformation characteristics of the URM walls. The 
main reasons for ignoring the contribution of masonry spandrels are the scarcity of experimental data 
on masonry spandrels under seismic loading and the resulting absence of validated mechanical 
models. Recent experiments (Gattesco et al. 2008; Beyer and Dazio, 2012) have revealed the force-
deformation characteristics of masonry spandrels. The objective of the current study is to obtain 
deeper insights into the behavior of masonry spandrels by numerical modeling. 
 
The numerical representation of masonry can be achieved either by micro-modeling, i.e., modeling the 
constituents separately, or by macro-modeling, i.e., modeling the structure as a continuum. In micro-
modeling the units are represented by continuum elements and the joints are modeled by interface 
elements. Depending upon the level of accuracy and simplicity, micro-modeling can be classified into 
two modeling approaches  detailed micro-modeling and simplified micro-modeling. In detailed 
micro-modeling, joints are represented by mortar continuous elements and discontinuous interface 
elements, while in simplified micro-modeling, joints are represented by discontinuum elements 
(Lourenco, 1994).  
 



  

Figure 1. a. Old URM building during the L’Aquila earthquake on April 6th, 2009, showing spandrel failure;    
b. Detailed view of the spandrel failure (Beyer and Dazio, 2012), Photo b courtesy of A. Dazio 

 
The macro-modeling approach (e.g., Gambarotta and Lagomarsino, 1997) models the whole structure 
as a continuum without any distinction between the units and joints. Macro-modeling is useful for 
studying the global response of the structure. Simplified micro-modeling is suitable for small 
structural elements as their responses can be closely represented using the knowledge of material 
properties. In the current study, simplified micro-modeling is adopted in order to capture the force-
deformation characteristics of the masonry spandrels from the constituent properties. The current study 
focuses only on masonry spandrel elements with shallow arches and with constant axial load on the 
spandrel. 
 
 
2. EXISTING PROVISIONS 
 
FEMA 306 guidelines (ATC, 1998) and the Italian code OPCM 3431 (OPCM, 2005) are, to our 
knowledge, the only standards that propose equations for the strength of masonry spandrels. The 
current section provides a brief summary of the FEMA and OPCM models. For a detailed review of 
the various mechanical models for spandrels readers are referred to Beyer and Mangalathu (2012). 
 
FEMA 306 addresses the peak and the residual strengths of masonry spandrels. The flexural capacity 
of the spandrel in FEMA 306 (Eq. 2.1, Table 1) is assumed to be derived from the shear stresses in 
joints between bricks that are pulled out due to the opening of a flexural crack at the interface between 
the pier and the spandrel. The peak shear strength capacity of the spandrel in FEMA 306 is based on 
the model by Turnsek and Cacovic (1970). 
 
The Italian seismic design code OPCM 3431 (OPCM, 2005) provides guidelines for computing the 
shear and flexural capacities of spandrel elements in URM buildings (Table 1). It distinguishes 
between spandrel elements for which the axial forces are either known or unknown. If the axial force 
in the spandrel is known, the spandrels are treated like piers for the computation of shear strength 
associated with the flexural mechanism. If it is unknown, the flexural capacity of the spandrel is 
computed from a strut-and-tie mechanism by replacing the axial force in the spandrel, Psp (Eq. 2.2) 
with the minimum of Hp and 0.4hsptspfhd, where Hp is the tensile strength of the horizontal tension 
elements such as steel ties or ring beams. The geometric parameters, height of the spandrel (hsp) and 
thickness of spandrel (tsp) are shown in Fig. 2 and fhd is the design compressive strength of the masonry 
in the horizontal direction.  
 
Like FEMA 306, OPCM 3431 adopts the shear capacity model by Turnsek and Cacovic (Eq. 2.5), if 
the axial force is known. If it is unknown, the shear capacity is computed using Eq. 2.3. OPCM 3431 
also provides a shear capacity equation (Eq. 2.4) based on a sliding shear mechanism in the 
compression zone. It is, however, not clear whether the OPCM equations address the peak strength or 
the residual strength of the masonry spandrels. 
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Table 1 provides a summary of the FEMA and OPCM models. The geometric parameters lsp, lb, lj, hb 
and hj in Table 1 are defined in Fig. 2. The variable fdt in Table 1 is the diagonal tensile strength of the 
masonry, c the cohesion,  the coefficient of friction, psp is the mean axial compressive stress in the 
spandrel (psp = Psp/hsptsp), and hc the height of the compression zone. 
 
Table 1. Summary of Equations for Predicting the Spandrel Strength (Beyer and Mangalathu, 2012) 

FEMA Flexure 

 bj

sp
tot,psp

sp
fl,p hh4

h
fh

3

2

l

2
V


  1)                  (2.1)

 

with 
 1NBh

2

l
f

2

l
tff b

b
sj,p

b
bbj,ptot,p 

  

        

pierbjp cf  5.0,

where, NB = number of wythes

OPCM 

Flexure 














sp

c

sp

sp
spfl h

h

l

h
PV 1                   (2.2) 

Shear 1 redspsps cthV   with    jbbj
red

llhh
cc




/21

1
                  (2.3) 

Shear 2 
spredspcs P4.0cthV   with 

sphd

sp
c tf85.0

P
h                    (2.4) 

and cred as in Shear 1 
Turnsek and 

Cacovic 
(1970) 

Shear 
dt

sp
spspdts,p f

p
1thfV    with 00.1

l

h
67.0

sp

sp                   (2.5) 

1) End moments are converted to a shear force assuming the spandrel is subjected to double bending 
 

 
Figure 2. a. General geometry of spandrel; b. Geometry of bricks and mortar (Beyer, 2012) 

 
 
3. EXPERIMENTAL STUDY 

 
Beyer and Dazio (2012) tested four masonry spandrels that featured either a timber lintel or a shallow 
masonry arch. The results of one of the spandrel elements with a shallow arch were chosen to validate 
the numerical model. A brief summary of the experimental setup is given in the following section; for 
a more detailed description of the test see Beyer and Dazio (2012). The test consisted of quasi-static 
cyclic loading of masonry spandrels. A schematic diagram of the test setup is shown in Fig. 3. A drift 
was imposed on the two piers, which defined the deformation demand on the spandrel. The axial 
elongation of the spandrel was restrained by the horizontal rods. The axial force in the spandrel was 
kept constant throughout the test with the help of a special load control system. The mechanical 
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properties of the construction materials were determined by material tests which were carried along 
with the quasi-static cyclic tests. These properties are given in Fig. 3. 
 

 
All dimensions are in mm

Test unit pier 

[MPa] 
c 

[MPa] 
µ 

[ - ] 
fcm 

[MPa] 
Axial force in the spandrel 

(Psp) 

TUC 0.43 0.18 0.73 16.5 
Constant 

80 kN 
pier 

c 
Mean vertical stress on piers 
Cohesion of mortar joint 

fcm 

µ 
Compressive strength of masonry 
Coefficient of friction of mortar joint 

 
Figure 3. Test setup for spandrel test and mechanical properties of the constituent materials (Beyer and Dazio, 

2012) 
 
 
4. NUMERICAL MODELING OF MASONRY 

 
A two-dimensional modeling approach was adopted in the current study to replicate the experimental 
test setup. The commercial finite element package ATENA (Cervenka, 2007) was used for the current 
study. Using the simplified micro-modeling approach each brick was modeled as a separate unit with 
contact properties assigned at the interface. 
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Figure 4. Failure surface for interface elements 
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The interface was modeled according to the failure surface as shown in Fig. 4. The initial failure 
surface follows Mohr-Coulomb friction law with an ellipsoidal failure surface in the tension regime 
(Fig. 4). Once the interface reaches its maximum shear stress (), it loses its cohesion (c) and tensile 
strength (ft). The residual failure surface accounts only for the frictional strength. The tensile and shear 
softening was defined based on the fracture energy associated with each mode. 
 
4.1 Description of the model 
 
The bricks were modeled as plane stress elastic isotropic elements with a mesh element size of 10 cm. 
The steel beams on the top and bottom of the masonry walls were also modeled as plane stress elastic 
isotropic elements with a mesh size of 10 cm. The meshes, both in the bricks and the steel beams, were 
of quadrilateral shape (CCISoQuad) and a mesh sensitivity study revealed that reducing mesh size 
further had no effect on the global response. The interface was modeled with 2D interface elements 
with the interface properties and the failure mechanism as given in Fig. 3 and 4. The tensile and shear 
softening of the interface was modeled based on the fracture energy associated with each mode and a 
linear variation was assumed in the current study. The fracture energy of the shear mode (GII

f) was 
calculated from the experiments as 0.1 N/mm and the fracture energy (GI

f) for the axial mode was 
assumed to be 1/10th of that for the shear mode, i.e., GI

f = 0.1 GII
f. 

 

 

 

Figure 5. a. Numerical model for masonry-arch spandrel; b. Measurement of drift 

A typical representation of the numerical model created in ATENA is shown in Fig. 5a. Although 
quasi-static cyclic loading was applied in the experiments of Beyer and Dazio (2012) the current 
numerical study is limited to monotonic loading, i.e., loading only in a single direction, for the 
following two reasons: (1) The envelope of the force deformation curve from the quasi static cyclic 
loading is an approximate representation of the force deformation curve from the monotonic loading. 
(2) As the objective of the current study is to conduct a parametric analysis, it is desirable to reduce 
the computational effort. The computational effort associated with monotonic loading is less in 
comparison to quasi-static cyclic loading. 
 
The analysis of the numerical model was carried out in two steps. The axial loads on the piers and the 
spandrels were applied first, followed by the displacement at the end of the steel beams. The 
displacement was applied in the upward direction for the left steel beam and in the downward 
direction for the right steel beam (Fig. 5a). Numerical analysis was carried out with the standard 
Newton-Raphson algorithm. The tangent stiffness was updated at each step of the analysis. The 
number of iterations was restricted to 40 with a displacement error tolerance of 0.01. If the algorithm 
failed to converge the number of iterations was increased to 100. 
 
4.2 Validation of the numerical model 
 
The accuracy of the finite element model (FEM) was verified through the comparison with the 
experimental data for TUC from Beyer and Dazio (2012). The force-deformation behavior obtained 
from the numerical model and the experiments are shown in Fig. 6. The positive and negative 
envelope of the quasi-static cyclic loading from the experimental results is plotted in Fig. 6. The 
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numerical model is able to predict the peak strength as well as the force deformation characteristics up 
to a drift of 0.34 %, the maximum drift for which convergence was obtained. Figure 7 shows the 
deformed shape of the test unit and the numerical model at a drift of 0.2 %. The numerical model is 
able to capture the failure pattern with adequate accuracy. 

 
Figure 6. Comparison of the numerical model with the experimental results 

 

  

Figure 7. Deformed shape at a drift () of 0.2 %, a. Test specimen TUC (Beyer and Dazio, 2012); b. Numerical 
model in ATENA (magnification factor of 10) 

 
 
5.  PARAMETRIC ANALYSIS AND COMPARISON WITH THE EXISTING MODELS 
 
In order to identify the parameters that have a significant influence on the peak strength of the 
masonry spandrels, a parametric study was carried out by varying one parameter at a time from the 
numerical model used for experimental validation An initial sensitivity analysis revealed that the axial 
stress on the spandrel (psp), cohesion (c), and the ratio of the height of the spandrel to the length of the 
spandrel (hsp/lsp) are the most significant parameters that affect the peak strength and the mode of 
failure associated with masonry spandrels. A detailed parametric study was carried out to check the 
variation of the peak strength with respect to the parameters such as psp, c, and hsp/lsp. The results of the 
parametric studies are shown in Fig. 8 to 10. These figures also provide a comparison of the 
numerically determined peak strength values with those predicted by the existing mechanical models 
(section 2). The diagonal tensile strength of the masonry fdt was not determined experimentally and a 
value of fdt = 0.10 MPa was assumed for all spandrels. The horizontal strength fhd of the masonry was 
also not determined experimentally and as a first approximation, fhd was assumed to be equal to the 
vertical compressive strength of the masonry fcm (Beyer and Dazio, 2012). The combined height of a 
brick and a joint was 74 mm. The length of a brick and the width of a head joint were assumed to be 
120 mm and 10 mm, respectively. 
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5.1 The effect of axial stress on the peak strength of the spandrel 
 
A parametric study was carried out using the model described in section 4 in order to ascertain 
whether the peak strength is affected by the axial stress in the spandrel. The axial stress was varied 
from 0 MPa to 0.25 MPa. The results of the parametric sensitivity analysis are shown in Fig. 8. Figure 
8 shows that the peak strength of the spandrel is not much influenced by the axial stress on the 
spandrel, but determines the mode of failure associated with the masonry spandrel, i.e., flexural mode 
of failure is associated with low axial stresses and diagonal shear failure with higher axial stresses. 

 
Figure 8. Variation of peak strength with respect to the change in the axial stress on the spandrel 

 
Figure 8 shows that none of the existing models are able to predict the peak strength of the masonry 
spandrels. OPCM models significantly underestimate the peak strength of the masonry spandrels. 
Although the Turnsek and Cacovic model significantly underestimate the peak strength of the masonry 
spandrels, it is the only model which can provide a fair estimate of the peak strength of the masonry 
spandrels. It is, however, to be noted that the current comparison by Turnsek and Cacovic model is 
based on an assumed diagonal tensile strength. The FEMA flexural model predicts a constant peak 
strength when the axial load is varied. This is expected since the influence of the axial load was not 
considered in the FEMA model 
 
5.2 The effect of cohesion on the peak strength of the spandrel 
 
In order to study the effect of cohesion (c) on the peak strength of the spandrel, a parametric study was 
conducted for various values of cohesion (ranging from 0.10 MPa to 0.30 MPa). The diagonal shear 
mode was observed to be the failure mode for the selected spandrels. The variation of the peak 
strength with respect to the change in cohesion is shown in Fig. 9a. Figure 9a shows that the peak 
strength is greatly affected by cohesion and increases with an increase in cohesion. The OPCM model 
(shear 2) and the Turnsek and Cacovic model predict constant peak strength irrespective of the value 
of cohesion. The model by OPCM (shear 1) is able to identify the trend in the variation of peak 
strength with respect to the change in the cohesion, albeit with a constant offset. 
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Figure 9. Variation of peak strength with respect to, a. Change in cohesion; b. Height to length ratio of the 

spandrel 
 
5.3. The effect of height to length ratio of the spandrel on the peak strength of the spandrel 
 
Figure 9b shows the results of a parametric study on the influence of the ratio hsp/lsp on the peak 
strength of the masonry spandrel. The load-carrying capacity diminishes as the pier becomes more and 
more slender. OPCM model (shear 2) is unable to capture the variation of the peak strength with 
respect to the hsp/lsp ratio although they are able to predict the peak strength values at low slenderness 
ratios. The Turnsek and Cacovic shear model can identify the variation of the peak shear strength with 
respect to the change in the hsp/lsp ratio. 
 

 

Figure 10. Force-deformation characteristics of the masonry spandrel with respect to a) change in axial stress on 
the spandrel; b) height to length ratio of spandrel 
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6. FORCE-DEFORMATION CHARACTERISTICS OF MASONRY SPANDRELS 
 
The force-deformation characteristics of the masonry spandrel for different axial stresses (psp) and 
height to length ratio of spandrel (hsp/lsp) are shown in Fig. 10. The shear force in the spandrel varies 
linearly with the rotation ( up to a point where the first cracks form in the spandrel, similar to what 
was noticed from the experiments (Beyer and Dazio, 2012). The stiffness of the spandrel reduces once 
it cracks, but the shear carrying capacity increases till the peak strength is reached. The shear strength 
capacity reduces rapidly beyond the peak strength. 
 
 
7. CONCLUSIONS 
 
In spite of the importance of masonry spandrels in the force-deformation characteristics of masonry 
piers, they are rarely considered in designs due to the lack of experimental data and mechanical 
models. A detailed parametric study was carried out to identify the parameters that have a significant 
influence on the peak strength of the masonry spandrels with shallow arches. Parametric studies 
revealed that the cohesion (c) and the height to length ratio of the spandrel (hsp/lsp) are the most 
sensitive parameters affecting the peak strength of masonry spandrels. The mode of failure (flexure or 
diagonal shear) of the masonry spandrels is determined by the axial stress in the spandrel. 
 
The current study shows that the existing models (FEMA and OPCM) significantly underestimate the 
peak strength of masonry spandrels. The peak strength capacity of the spandrel might be of interest for 
the assessment of a building before an earthquake when a visual inspection has shown that the 
spandrels are still largely uncracked and the few existing cracks are small. Future work should 
therefore expand the existing mechanical models of masonry spandrels such that they can capture the 
variation of the peak strength with respect to cohesion and height to length ratio of the spandrel. The 
current study focuses only on the peak strength of the masonry spandrel with shallow arches; residual 
strength, limit rotations are not addressed and are the subject of ongoing studies. 
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