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RI provides a suitable reference model for comparison in the absence of significant performance gain of 
other methods (Zechar and Jordan 2008, Nanjo 2010). The performance of MR forecasts is evaluated by 
using Molchan error diagrams (Molchan and Keilis-Borok 2008, Molchan 2010). In the following, three 
retrospective tests are performed to evaluate the forecasting ability of the proposed MR method at long 
and intermediate terms, and to discuss the prediction of the 2011 Mw 9.0 Tohoku earthquake at short 
term. It is found that MR forecasts performs very well and outscore the RI method. In particular, MR 
succeeds to predict the Tohoku earthquake while the RI method fails. 
 
 
2. DATA AND METHOD 
 
A composite catalog covering all Japan during the period 679-2011 is compiled, by combining the Utsu 
historical seismicity records for the period 679-1922 and the Japan Meteorological Agency (JMA) 
catalog for the period 1923-2011. This catalog is used in test 1 (long term forecasting), while for test 2 
(intermediate term forecasting) and test 3 (short term forecasting for the Tohoku earthquake), the 
catalog data are updated to the end of March 2012. The JMA catalog used contain preliminary 
determined epicenters starting from September 2011. The learning period starts January 1st 1890 
whereas it ends 7 days before a reference M7+ earthquake depending on the test. Earthquakes with 
magnitude M  6 (M6+) occurred during the learning period are used to calculate the MR and RI alarm 
functions which are then used to forecast M7+ target earthquakes. 
 
Inter-event times are sampled using the earthquake random sampling (ERS) algorithm (Talbi and 
Yamazaki 2010) with fixed sampling radius r = 100 km. For each sampling disk centred on x, a series of 
inter-event times ሼߦ௜ሽ௜ୀଵ

௡  is obtained. The moment ratio score MR is calculated for each location x as, 
 

,ݔሺܴܯ ሻݎ ൌ ሻݔሺܴܯ ൌ
కത

ఙ഍
	మ         (3.1) 

 
where ̅ߦ and 

2 are the arithmetic mean and the variance of the time series ሼߦ௜ሽ௜ୀଵ
௡ . The obtained MR 

scores from all sampling disks are plotted on a regular grid with cell size 0.5o0.5o. The set of grid cells 
with at least one observed MR score value defines the testing region G. For each cell C, the MR alarm 
function PMR is defined as the maximum observed MR score from all locations x occurring inside the cell 
C, 
 

ெܲோሺܥሻ ൌ max௫∈஼ሾܴܯሺݔሻሿ 	        (3.2) 
 
PMR is divided by the maximum observed score ெܲோ

௠௔௫ ൌ max஼∈ீሾ ெܲோሺܥሻሿ, to restrict its range to [0, 1]. 
The alarm function PRI for RI is calculated similarly using the relative frequency of the M6+ events. 
 
We proceed by retrospective binary forecasting. The testing region G is subdivided into m sub-regions 
Gi (here ܩ ൌ ⋃ ௜ܥ

௠
௜ୀଵ  where Ci are the cells forming the testing region), while the testing period [0, T] 

is divided into S sub-periods of equal length t. For each t > 0, a strategy i is defined inside each 
space-time region Ci[t, t+t] as follows (Molchan 2010), 
 

ሻݐ௜ሺߨ ൌ ቄ1			if	an	alarm	is	declared	in	the	region	ܥ௜ ൈ ሾݐ, ݐ ൅ ሿݐ∆
0																													if	not																																																													

   (3.3) 

 
If N target events occurs in the testing region G [0, T], we can calculate the statistics a : Number of 
target earthquakes that occurred in alarm cells, b : Number of alarm cells with no target earthquakes, 
c : Number of target earthquakes occurred outside alarm cells, d : Number of non-alarm cells with no 
target earthquakes. Two types of diagrams are used to evaluate our forecasts. The first one, which is 
called the receiver operating characteristic (ROC) diagram, plots the hit rate H = a/(a+c) against the 
false alarm rate F= b/(b+d). Points above the diagonal H = F outscores the random guessing strategy 
(Jolliffe and Stephenson 2003). The second diagram which is called error or Molchan diagram 



(Molchan 1997), plots the miss rate  = c/(a+c) = 1H against the space-time alarm rate  = 
(a+b)/(a+b+c+d). The diagonal  + = 1 corresponds to trivial strategies of random guess, and any 
points significantly below this diagonal outscores the random guessing strategy defined here by the 
score PU. In this sense, Molchan diagram is used to demonstrate how far from a random guessing are 
predictions that result from a given algorithm. Namely, it is used in this study to evaluate MR and RI 
forecasts by testing the null hypothesis H0 : PMR = PU (respectively (resp.) H0 : PRI = PU) against the 
alternative H1 : PMR > PU (resp. H1 : PRI > PU). Recently, Molchan diagram has been generalized to 
evaluate how far is the prediction from a given referential model (Molchan and Keilis-Borok 2008, 
Molchan 2010). In both cases, the miss rate is plotted against the following weighted space-time alarm 
rate, 
 

߬௪ ൌ ∑ ௜߬௜ݓ
௠
௜ୀଵ          (3.4) 

 
where i is the alarm time rate in the testing region Ci, 
 

߬௜ ൌ
ଵ

௦
∑ ૚ሼ࢏࣊ሺ࢐ઢ࢚ሻୀ૚ሽ
௦ିଵ
௝ୀଵ          (3.5) 

 
The logical function 1A equals 1 if A is true and 0 otherwise. 
To obtain a diagonal corresponding to the random guessing strategy, we use a uniform spatial prior 
distribution which assigns equal weights wi = wi

U = 1 / m to all cells Ci in Eqn. 3.4. To simplify the 
notation, we write w =  . In the special case where the weights in Eqn. 3.4 are equal to the unknown 
normalized rate of target events wi = wi

RI = ni / N, with ni the number of target events occurred in the 
testing region Ci, all RI reference strategies are projected onto the diagonal +w=1 of random 
guessing. However, the RI method uses estimates of normalized rate from learning events with 
magnitude lower than target events, so that RI strategies define a domain around the diagonal. Namely 
Molchan diagram is used in this case to test the null hypothesis H0 : PMR = PRI against the alternative 
H1 : PMR > PRI. In the following, Molchan diagram is plotted for each test using successively the 
weights wi

U and wi
RI in Eqn. 3.4, to evaluate the MR forecasting performance comparing to random 

guess and the RI method, respectively. 
 
In this study, the optimal MR forecast maps are obtained by plotting the MR scores exceeding the 
alarm function threshold corresponding to the minimum forecasting error e(,) =  +. The minimal 
forecasting error e(,) =  + is obtained by maximizing Peirce Skill score ܵܵ௣ሺ߬, ሻߥ ൌ 1 െ ߥ െ ߬ 
(Tiampo and Shcherbakov 2012), 
 

minሺఛ,ఔሻ∈ሾ଴,ଵሿమሼ݁ሺ߬, ሻሽߥ ൌ Max
ሺఛ,ఔሻ∈ሾ଴,ଵሿమ

൫ܵܵ௣ሺ߬,  ሻ൯      (3.6)ߥ

 
Optimal RI maps are obtained by plotting RI scores with a space time alarm rate equivalent to the 
corresponding MR optimal maps. In the following tests, the choice of the learning and testing periods 
is based on maximizing data quantity and quality. 
 
 
3. RESULTS 
 
3.1. Test 1 (Long term forecasting) 
 
For this test, the learning period is January 1st 1890 January 8th 1993 and the testing period is January 
8th 1993December 31st 2011. There are 22 M7+ target earthquakes (Table 1) occurred in the testing 
region composed of 282 cells. Events no 1, 5, 7 and 17 are deep (depth  100 km). About 1500 M6+ 
earthquakes were used in the calculation of the MR and RI alarm functions, among which 1115 occurred 
in the testing region. Here the alarm time step is the whole testing period t  19 years. 
 
 



Table 1. List of target M7+ earthquakes occurred in the testing region during the testing period for test 1 and 3. 
Long, Lat and Mag denote longitude, latitude and magnitude respectively. 

ID Long Lat Date Mag Name/Region Cluster Test no

1 144.353 42.920 1993/01/15 7.5 Kushiro-oki C3 1 
2 147.673 43.375 1994/10/04 8.2 Hokkaido-touhou-oki C3 1 
3 147.802 43.558 1994/10/09 7.3 Hokkaido-touhou-oki 

aftershock 
C3 1 

4 143.745 40.430 1994/12/28 7.6 Sanriku-haruka-oki C2 1 
5 139.912 28.891 1998/08/20 7.1 Chichi jima C5 1 
6 146.744 43.008 2000/01/28 7.0 Nemuro-oki C3 1 
7 140.086 28.821 2000/08/06 7.2 Chichi jima C5 1
8 141.651 38.821 2003/05/26 7.1 Miyagi-ken-oki C1 1 
9 144.078 41.779 2003/09/26 8.0 Tokachi-oki C2 1 
10 143.691 41.710 2003/09/26 7.1 Tokachioki aftershock C2 1
11 137.141 33.138 2004/09/05 7.4 Kii-hanto-oki  1 
12 145.275 42.946 2004/11/29 7.1 Kushiro-oki C3 1 
13 142.278 38.150 2005/08/16 7.2 Miyagi-ken-oki C1 1 
14 141.608 36.228 2008/05/08 7.0 Ibaraki-ken-oki C4 1 
15 140.881 39.030 2008/06/14 7.2 Iwate-Miyagi nairiku  1 
16 144.152 41.776 2008/09/11 7.1 Tokachi-oki aftershock C2 1 
17 139.589 28.358 2010/11/30 7.1 Chichi jima C5 1 
18 143.280 38.328 2011/03/09 7.3 Tohoku foreshock C1 1 and 3
19 142.861 38.103 2011/03/11 9.0 Tohokuchiho-Taiheiyo-oki C1 1 and 3
19p 142.781 39.839 2011/03/11 7.4 Tohoku aftershock  3 
20 141.265 36.108 2011/03/11 7.6 Tohoku aftershock C4 1 and 3
21 141.920 38.204 2011/04/07 7.2 Tohoku aftershock C1 1 and 3
22 143.507 38.032 2011/07/10 7.3 Tohoku aftershock C1 1 and 3
23 138.566 31,428 2012/01/01 7.0 Torishima Kinkai  3 

 
Fig 1a and b show the MR and RI maps, respectively. Hot spots in the MR map are broader and 
include the region below latitude 35o N; whereas the RI map is more cool with only two big hot spots. 
Hot spots in the MR map allow us to identify 5 clusters (Table 1). Namely, the MR map hot spots 
catch the central cluster C1 (no 8, 13, 18, 19, 21 and 22) including Miyagi-ken-oki and Tohoku 
earthquakes. The same occurs for the cluster C2 formed by the Tokachi-oki and its aftershocks (no 9, 
10 and 16), and the Sanriku-haruka-oki earthquake (no 4). The cluster C3 located east of Hokkaido 
formed by Kushiro-oki, Hokkaido-touhou-oki and Nemuro-oki (no 1, 2, 3, 6 and 12) is also marked by 
hot spots. The maximum MR value is registered at the east of Tokyo bay where the cluster C4 formed 
by the Ibaraki-ken-oki and an aftershock of Tohoku earthquake occurred (no 14 and 20). The southern 
cluster C5 formed by Chichi jima deep (depth > 400 km) earthquakes (no 5, 7 and 17) and the 
Kii-hanto-oki (no 11) occurs close to hot cells. The proximity of target earthquakes from hot cells 
suggests that our prediction may be improved by smoothing via Moore neighborhood, for example by 
considering the eight cells around each hot cell (Moore neighborhood) as alarm cells. The 
Iwate-Miyagi-Nairiku (no 15) did not occur at hot spots probably because its epicentral region is not 
well covered by our sparse data. The RI map shows mainly two hot spots. The northern one is 
concentrated around the Sanriku-haruka-oki (no 4), and the second one, which spots the cluster C4, is 
located around the Ibaraki-ken-oki and an aftershock of the Tohoku earthquake (no 14 and 20). The 
cluster C1 which includes the Tohoku earthquake is not highlighted by any hot spot but appears as an 
extension or junction between the two former hot spots. 
 
Fig. 1c shows the ROC diagram for MR and RI. The dashed diagonal line is for random guessing. 
Both forecasting methods outperform the random guessing especially MR. Fig 1d and e show 
Molchan diagram obtained using a uniform and RI weighted spatial prior respectively. Solid, dashed 
and dotted curves shows 1%, 5% and 10% critical boundaries. The arrows points to the minimal 
forecasting error of MR (Eqn. 3.5) and the corresponding RI forecast. Since points below the critical 
boundaries reject the null hypothesis, we can conclude from Fig. 1d that MR (resp. RI) outscores the 
random guessing at the test level  = 1% for   [0.18, 0.67] (resp.   [0.35, 0.46]) and at  = 5% for 
almost all  (resp. for   [0.16, 0.80]). Similarly, Fig. 1e shows MR outscoring RI at  = 1% and 5% 
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