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SUMMARY 

Evaluation of P-Δ effects is an important factor in structural stability control. In the conventional first order 

analysis of structures, equations of equilibrium are obtained based on the undeformed state of the structures, 

while in the second order analysis, acting loads must first be transferred into a deformed state and then obtain the 

second order forces, moments, and additional displacements. In this study, a computer program was developed to 

analyze two dimensional structures by the first and the second order dynamic analysis. The numerical solution 

method used in this program is based on the Jennings numerical method. By this program, P-Δ Dynamic effects 

were evaluated for two types of steel structures with different heights. One type is a moment frame system and 

the other is an eccentric braced frame system. The first and the second order dynamic analysis were performed in 

these structures using the time history of the 1940 El-Centro earthquake. Results of the analyses show about 10% 

difference in absolute values of the first and the second order dynamic responses. This difference reveals the 

importance and the necessity of performing a second order dynamic analysis in the calculation of P-Δ effects. 
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1. INTRODUCTION 
 

One of the most important issues in the stability of structures is the secondary effects of gravity loads 

on lateral displacement due to lateral forces. Second order dynamic analysis of the structures under 
dynamic loading is actually the application of P-Δ effect in the structural analysis. Internal forces of 

structural members and displacements are obtained through the first order analysis of the structure 

under the simultaneously effects of gravity and lateral loads. Results of the first order analysis are like 

to those of the principle of superposition of forces and are separate at each loading case. Interaction 
between the effects of gravity and lateral loading is not considered in the first order analysis.  

 

In the second order dynamic analysis, for certain values of frequency, lateral vibration is induced in 
the columns and makes them become instable. This problem was first solved by Belajev (1924).  In 

addition, he also recognized this fact that the maximum dynamic compression force may be much 

more than the Euler critical load, but column still remains stable.  

 
Many researchers have studied the second order static and dynamic analysis of structures. For 

instance, Chen and Lui (1986 and 1991) and Bernal (1987) carried out detailed studies on the stability 

of structures against lateral forces by applying P-Δ effect. They also performed studies on the 
coefficients of non-linear dynamic amplification under the same effect. Smith also compared the 

response of conventional and tall structures by applying the P-Δ effect. 

 

 

 

 



2. THEORETICAL DESCRIPTION OF SECOND ORDER ANALYSIS  

 

Developing a geometric stiffness matrix is the base for any exact second order analysis. If a change in 

axial forces is dynamic, then the stiffness matrix is obtained through the combination of stiffness 
matrices of members at any moment. This matrix will be different from those obtained a moment 

before or a moment after. Since the axial force of the member changes under earthquake loading, its 

stiffness matrix also changes with respect to time. If stiffness matrices of members are transferred to 
global coordinates by rotation and transformation matrices, then the total stiffness matrix of the system 

can be calculated by their sum. Having the first order axial forces of the members, coefficients of the 

second order matrices are calculated at each moment. In this study, results of the final analysis are 
obtained by two repetitions. In the first repetition, axial forces obtained from the first order analysis 

are considered and in the second repetition, axial forces obtained from the first repetition are taken into 

account.  

 
Equation of motion of the system under the dynamic loading which considers changes in axial forces 

is as follow: 

 
(1)                                                  [M]{u (̈t)}+[C(t)]{u˙(t)}+[K(t)]{u(t)} ={r}{P(t)} 

 

where, [M] is the mass matrix of the system, [C] is the damping matrix, [K(t)] is the stiffness matrix,      
{u(t)} is the displacement vector, {r} is the connecting vector of dynamic forces, and {p(t)} is the 

vector of dynamic forces. In solving this equation, it should be noted that the stiffness matrix of the 

system is not constant and continuously changes with respect to time. Variable stiffness matrix is 

obtained by assembling of the second order stiffness matrices of members. The second order stiffness 
matrix of the members which is variable with respect to time is 
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where, Ei is the modulus of elasticity of the i
th 

 member, Ii is the moment of inertia of the i
th

 member, 

Li is the length of the i
th

 member and φ1(t)i, φ2(t)i, φ3(t)i, φ4(t)i are the second order coefficients of 

the i
th 

member, respectively (Chen’s coefficients). According to definition, their expansions are 
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 (3)                           
                   

where, Pi is the axial force of the i
th

 member with respect to time and PEi is the Euler buckling force 

of the i
th
 member.  

 
Considering that the damping matrix is proportional to the mass and the stiffness matrices, it can be 

assumed that there is a certain stiffness matrix in each time step. Then, the Eigen values and the modal 

contribution can be calculated by the stiffness matrix. This type of analysis is considered in this study. 
 

 

3. JENNINGS NUMERICAL METHOD BASED ON LINEAR INTERPOLATION    
 

Jennings numerical method is the most suitable and programmable modal numerical method to 

calculate the response of linear systems. This method is based on the exact solution of the differential 

equation of motion by interpolation of input data at each time step. Differential equation of motion in 
the time interval between ti to ti+1 (i

th 
stage) in terms of temporal parameter τ and assuming linear input 

variations is explained as 

             

                                                 𝑚𝑦  𝜏 + 𝑐𝑦  𝜏 + 𝑘𝑦 𝜏 =  𝑥𝑖 + 𝛼𝜏                                                   (4)                                            

 

Applying the initial conditions and solving the homogeneous differential equation of motion, 

displacement and velocity in the i
th 

stage in terms of τ are equal to 
 

                               𝑦 𝜏 =  𝐶0 + 𝐶1𝜏 + 𝐶2𝑒
−𝜉𝜔𝑛 𝜏𝑐𝑜𝑠 𝜔𝐷𝜏 + 𝐶3𝑒

−𝜉𝜔𝑛 𝜏𝑠𝑖𝑛 𝜔𝐷   
 

           𝑦  𝜏  = 𝐶1 + (𝜔𝑛𝐶3 − 𝜉𝜔𝑛𝐶2) 𝑒−𝜉𝜔0𝜏𝑐𝑜𝑠 𝜔𝑛𝜏 −  (𝜔𝐷𝐶2 + 𝜉𝜔𝑛𝐶3)𝑒−𝜉𝜔0𝜏𝑠𝑖𝑛 𝜔𝐷τ                (5)        

 
Then, the displacement and velocity of the i

th
 stage can be obtained by separation of the above 

coefficients using the following equation: 
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At any time step, new values of the frequencies for all modes are put in the Jennings’s equations and 

are solved simultaneously. For this purpose, a computer program was developed to perform the first 
and the second order analysis for both static and dynamic methods. 

 

 

4. SAMPLE STRUCTURES AND COMPARISON OF THEIR RESPONSES  

 

Two types of 2-span steel structures with three, five, and seven stories high were considered. One of 

the structural types is a Moment Resisting Frame (MRF) and the other is an Eccentrically Braced 
Frame (EBF) (Λ-Braced). The supports in both types are fixed and the lengths of the spans are 4.5 

meters in both X and Y directions. Two distributed loads (700 kg/m  as dead load and 200 kg/m  as 

live load) were applied on the floors of both types. The 1940 El-Centro earthquake accelerograms 
were applied on all sample structures. As an example, the responses of the horizontal and vertical 
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displacements and rotation of the degrees of freedom of the seven storey building are shown in Figs 1 

and 2, respectively (all units are in centimeter). 
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Figure 1. Horizontal and vertical responses and rotation of degrees of freedom 
in the seven storey building with MRF system. 
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Figure 2. Horizontal and vertical responses and rotation of degrees of freedom 

in the seven storey building with EBF system. 

 

 



5. COMPARISON OF RESULTS OF P-Δ DYNAMIC EFFECTS  

 

Table 1 shows a quantitative comparison of the results of the analyses of P-Δ dynamic effects which 

includes the difference between the displacements of the first and second order dynamic analyses. It 
should be note that the second order analysis is done in two repetitions. In the first repetition, the 

obtained axial forces from the first order dynamic analysis is considered, and axial forces obtained 

from the first repetition is taken as a basis for the second repetition. Although the results of the second 
repetition are considered as final, but results of both repetitions are appeared in Table 1 to show the 

convergence quality of both analyses.  

 
Table 1. Percent of difference of displacements in nodes (DOF) by the first and the second order dynamic 

analyses. 

Type of 

Structure 
Repetition Horizontal DOF Vertical DOF Rotational DOF 

 

3 story MRF 

First 0.8 1.5 0 0 0 0 

Second 0.5 0.9 0 0 0 0 

 

5 story MRF 

First 4 0.7 0 1.2 1.9 0 

Second 6.4 2.4 0 1.2 2.3 0 

 

7 story MRF 

First 0.9 2.1 0 2 13 0 

Second 11.5 0.5 0 2 13 0 

 

3 story EBF 

First 3.5 0.4 7.5 0 0 0 

Second 3.5 0.1 7.5 0 0 0 

 

5 story EBF 

First 2.7 0.4 3.1 2.1 0 0 

Second 2.6 0.21 3.1 2.1 0 0 

 

7 story EBF 

First 5.2 0.4 4.1 2.2 6.6 0 

Second 5 0.2 4.3 2.2 6.7 0 

 

5.1. Comparison of Rotation of Nodes in MRF Structures 
 

Significant difference in the rotation of nodes, particularly in the lower stories is an issue that should 

be taken into consideration, because other than creating secondary moments in the nodes, it causes a 
complete change in the condition of plastic hinges and ultimately, failure mechanism in the structure. 

According to Table 1, a significant difference in rotational transformation of the lower stories, 

particularly in the MRF system leads to significant support moments in the lower nodes which are 
naturally not considered in the first order dynamic analysis. For instance, the difference between the 

results of the first and second order dynamic analyses for nodes in rotation of the lowest storey in the 

seven storey structure with MRF system is about 13% (Fig. 3). 

 

5.2. Comparison of Moments of Columns in MRF Structures 

 

Significant difference in the moments of members is also an important point that should be 
considered, because other than creating secondary moments, it finally leads to develop mechanism in 

the members. This increase in moments, especially in columns is due to the change in the stiffness of 



members in the process of the second order dynamic analysis. For instance, difference between the 

results of the first and second order dynamic analyses for the moments in the lowest storey’s column 

in the seven storey structure with the MRF system is 10.5% (Fig. 4). 

                                                                                                                                                                                                             

                                                                                                                                  

ΔθD=13% 

 

Figure 3. Difference of rotations between the responses of the lowest storey node in the  

seven storey building with MRF system. 
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Figure 4. Difference of moments between the responses of the lowest storey column in the  

seven storey building with MRF system. 

 

5.3. Comparison of Shears of Linked Beams in EBF Structures 
 

Shears in the linked beams of the EBF structures should also be paid attention. Increase of shear in the 

linked beams is not included in the first order analysis. Some differences are observed between the 
shear values in the linked beams which are due to the change in the stiffness of these members in the 

process of the second order dynamic analysis. As an example, the difference of shear values in the 

linked beams of the second floor in the five story structure with EBF system is 9.6% (Fig. 5).  

 

   ΔSD=9.6% 

 

 

Figure 5. Difference of shears between the responses of the lowest storey beam in the  

five storey building with EBF system. 

 

5.4. Comparison of Moments of Beams in MRF Structures  
 

Another important factor that should be considered is the moments in beams. Results of the analyses 

reveal that the difference in the moments of beams, particularly in the MRF structures needs attention. 

Increase of moment in beams is not considered in the first order analysis. It is obvious that if the 
applied loads on nodes increase, the moments in beams will also increase by the same proportion. 

Some differences are observed between the moments of beams in the first and second order dynamic 

analyses which are due to the change in the stiffness of members in the process of the second order 



dynamic analysis. For instance, difference between the results of the first and second order dynamic 

analyses for the moments in the highest storey’s beam in the five storey structure with the MRF 

system is 7.3% (Fig. 6). 

 

 

     ΔMD=7.3% 
 

 

 

Figure 6. Difference of moments between the responses of the highest storey beam in the  
five storey building with MRF system. 

 

5.5. Comparison of Axial Forces of Columns in MRF Structures  

 

Increase in the axial forces of columns is also an important aspect that should be considered, because it 
can finally produce plastic hinges in the columns which may lead to collapse of the structure. These 

changes in the axial forces, especially in columns, change the second order coefficients in the process 

of the second order dynamic analysis. For instance, difference between the results of the first and 
second order dynamic analyses for the axial forces in the lowest storey’s column in the five storey 

structure with the MRF system is 6.9% (Fig. 7). 

 

 

 

 

ΔPD=6.9% 

 

 

 

 
Figure 7. Difference of axial forces between the responses of the first and second order dynamic analyses 

of the lowest storey column in the five storey building with MRF system. 

 

5.6. Comparison of Axial Forces of Columns in EBF Structures  
 

Difference in the axial forces in columns in EBF structures is also an important issue that may lead to 

failure mechanism in the columns. Changes of axial forces in EBF structures are less than those in 
MRF structures. For instance, difference between the results of the first and second order dynamic 

analyses for the axial forces in the lowest storey’s column in the five storey structure with the EBF 

system is 5.2% (Fig. 8). 
 
 

 

 

ΔPD=5.2% 

 

 

 

 

 
Figure 8. Difference of axial force between the responses of the lowest storey column in the  

five storey building with EBF system. 

 

 



6. CONCLUSIONS 

 

In this study, dynamic effects of P-Δ in steel structures with MRF and EBF systems were evaluated by 

the second order dynamic analysis. For this purpose, a computer program was developed and different 
analysis methods such as the first order and the second order dynamic analyses were studied on 

sample structures. Results of the study show that the convergence between the two repetitions in EBF 

structures is faster than MRF structures.  
 

Also, results of analyses show an average difference of about 10% in the absolute values of responses 

in the first and second order dynamic analysis. This difference emphasizes the importance of 
performing the second order dynamic analysis in calculation of P-Δ effects. 
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