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SUMMARY:  
In order to execute the optimization design to a bridge system involving large design variables and multiple 
design standards including aseismic requirements, a bi-level optimization algorithm Collaborative 
Optimization(CO) algorithm is introduced to decompose the large and complex system into some relatively 
small and simple disciplines or subsystems which are often highly coupled by design variables. In this way, two 
decomposition methods are proposed: disciplinary-oriented decomposition and component-oriented 
decomposition. For disciplinary-oriented decomposition, bridge system design is decomposed into three 
disciplines: carrying capacity discipline, E1 earthquake discipline and E2 earthquake discipline. For 
component-oriented decomposition, bridge system design is decomposed into three subsystems: superstructure 
subsystem, bearing subsystem and substructure subsystem. In order to examine the efficiency of CO and to 
compare the optimization performance of the two proposed decomposition methods, mono-discipline 
optimization algorithm and the proposed methods are implemented to an example of a multi-span continuous 
girder bridge optimization design. The design results obtained from different methods are presented and 
discussed. 
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1. GENERAL INSTRUCTIONS 
 
Many optimization algorithms have been developed for structure design aiming at making the 
structure economical and reasonable. The results of application to structures optimization design have 
confirmed the effectiveness of published optimization algorithms both in numerical experiments and 
in practice cases. However, most of these published methods are concerned with the optimization of 
structural member or structural measure which has few design variables. These optimization problems 
can always be settled by adopting mono-discipline algorithm such as gradient-based algorithms. For a 
complex structural system, especially for a bridge system design, a large number of design variables 
are involved during the optimization design process. The increase of design variable numbers induces 
the considerable leap in complexity of optimization model when solved using mono-discipline 
optimization algorithms. It makes computation cost increased sharply or could be worse, the 
optimization process traps in purposeless successive iterations unable to reach a reasonable solution. 
In order to deal with this kind of problems, reasonable idea is put forward: divide the large and 
complex system into some relatively small and simple disciplines or disciplines which are often highly 
coupled by design variables and easier to be solved by applying appropriate optimization algorithm. 
This is the main idea of multi-level optimization methods.  
 
As a bi-level optimization method, Collaborative Optimization(CO) method has been applied to 
structure optimization design in order to deal with the high complexity optimization problems. 
Balling[1] applied CO to a three-dimensional reinforced concrete frames taking concrete-section 
dimensions and the number, diameter, and topology of reinforcing bars as design variables. Balling 
and Gale[2] applied collaborative optimization to two structures (hub and tower) design problems. 



Balling and Rawlings[3] applied CO to a long span bridge concept optimization design, which was the 
first time CO was applied to bridge optimization design. Huang and Wang[4] decomposed RC 
structure design process into two mechanics disciplinary: statics discipline and dynamics discipline, 
verified the feasible of discipline-oriented decomposition CO to RC structure design. Wang and 
Tang[5] applied CO to bridge system performance-based seismic design, in which bridge system 
design process is decomposed into three disciplines: carrying capacity discipline, E1 earthquake 
discipline and E2 earthquake discipline in terms of load types and structural seismic performance 
levels. Then, Wang and Tang[6] subdivided the bridge system design into three component-oriented 
subsystems: superstructure subsystem, bearing subsystem and substructure subsystem. By comparing 
the results with traditional optimization algorithm, CO shows high computing efficiency when 
achieving the same optimization results.  
 
Note that in above-mentioned documents, all the structures were component-oriented or 
disciplinary-oriented decomposed and ideal results were obtained. For bridge systems, both 
decomposition methods can be employed. However, when the aseismic requirements are taken into 
account in a structure design process, in some cases, nonlinear analysis is needed especially for the 
structure design in terms of performance-based seismic design criterions. It is a more time-consuming 
process than linear analysis when some numerical computational tools such as finite element method 
are used. How to decompose a bridge system with which the optimization process can be more 
efficient is a problem necessary to study. In this paper, bridge systems are decomposed with two 
decomposition methods: disciplinary-oriented decomposition and component-oriented decomposition. 
For disciplinary-oriented decomposition, bridge system design is decomposed into three disciplines: 
carrying capacity discipline, E1 earthquake discipline and E2 earthquake discipline. For 
component-oriented decomposition, bridge system design is decomposed into three subsystems: 
superstructure subsystem, bearing subsystem and substructure subsystem. In order to examine the 
efficiency of CO and to compare the optimization performance of the two proposed decomposition 
methods, mono-discipline optimization algorithm and the proposed methods are implemented to an 
example of a multi-span continuous girder bridge optimization design. The design results obtained 
from different methods are presented and discussed. 
 
 
2. COLLABORATIVE OPTIMIZATION ARCHITECTURE 
 
As a bi-level optimization strategy, collaborative optimization is an approach to Multi-Disciplinary 
Optimization(MDO) problems based on the decomposition of the problem along the lines of the 
constituent disciplines. It seeks to state and solve MDO problems in a way that preserves the 
autonomy of the disciplinary calculations by eliminating from the system level problem all those 
design variables local to individual disciplinary subsystems[7].  
 
As shown in Fig. 2.1, in system level, the main function is to find objective values and drive the 
disciplinary discrepancies below tolerance  ε by interdisciplinary consistency constraints. In this way, 
disciplinary discrepancies are implicitly contained in the procedure of system level optimization. 
System level sends its collaborative solutions (shared variables S෨  and interdisciplinary coupling 
variablesܨ௦,ଵ෪ , ڮ , ௦,పିଵ෫ܨ , ௦,పାଵ෫ܨ , ڮ , ௦,୬෪ܨ ) to disciplines, at the same time it receives solutions పܵ෩ ,  ప෩ ofܨ
i-th disciplinary minimization optimization problem for the given value of the system level variables 
ሚܵ and ܨ௦,ଵ෪ , ڮ , ௦,పିଵ෫ܨ , ௦,పାଵ෫ܨ , ڮ , ௦,୬෪ܨ . In this way, system level coordinates coupling variables among 
disciplines until achieving a balance and reaching the optimum values for the coupling variables. 
 
In discipline level, discrepancy function serves as objective function. Such a introduction of 
disciplinary minimization problem is a distinctive characteristic of CO. after receiving shared 
variables S෨ and interdisciplinary coupling variables ܨ௦,ଵ෪ , ڮ , ௦,పିଵ෫ܨ , ௦,పାଵ෫ܨ , ڮ , ௦,୬෪ܨ , it begins to solve 
the disciplinary optimization problem independently. It should be note that the system level variables 
which have received serve either as parameters or objectives that discipline optimization try to match. 
Here Li is a list of local design variable for i-th discipline and Fi is computed via the i-th disciplinary 



analysis. gi is the disciplinary optimization constraints which are formulated in terms of disciplinary 
demands. When the solutions of disciplinary optimization problem obtained, the solutions పܵ෩ ,  ప෩ areܨ
sent to the system level for the next iteration. 
 
Note that the discipline analyses may be strong coupled for each other due to the same design 
variables S and analytical solutions of other disciplines Fj (j≠i). The introduction of system level 
variables S and its copy Si in discipline relax such coupling among disciplines. When a point (S, Fi) is 
feasible for the system level problem and realizable for all the constituent disciplines, this point is 
seemed as optimal objective value. 
 

 
 

Figure 2.1. Collaborative optimization architecture 
 
 
3. STATEMENT OF CASE BRIDGE 
 
In this study, a reinforcement concrete box girder bridge is selected as optimization object with 
following features: The width of the bridge is 15m to accommodate 4 lanes of traffic. Box girder is 
supported on the capbeam and 30m long per span. Plate rubber bearings are adopted. 7m high piers are 
connected monolithically to a concrete pile cap that is supported by nine piles. Girders, capbeams and 
double row concrete reinforcement circular piers all adopt C40 concrete, reinforced with HRB335 
longitudinal bars and R235 hooping bars. Pile caps and piles adopt C30 concrete and reinforced with 
HRB335 longitudinal bars. It should be point out that this bridge is assumed located on 8th intensity 
seismic region and 3th site class as defined in Ref. [8].  
 
Reinforcement concrete box girder(Fig. 3.1), pile-pier-capbeam frame(Fig. 3.2) and rubber bearings 
are design objectives in this study. Design variables are listed in Tab. 3.1. 
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Figure 3.1. Reinforcement concrete girder cross section 
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Figure 3.2. Reinforcement concrete pile-pier-capbeam frame 
 
Table 3.1. Design Variables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number Notation Description 
1 dgirder girder section depth 
2 tslab slab thickness 
3 tsoffit soffit thickness 
4 tint interior web thickness 
5 text exterior web thickness 
6 Aslablong slab longitudinal reinforcement area 
7 Asoffitlong soffit longitudinal reinforcement area 
8 Aintlong internal web longitudinal reinforcement area 
9 Aextlong exterior longitudinal reinforcement area 
10 rbeamstir beam stirrups ratio 
11 tbearing bearing thickness 
12 lbearing bearing side length 
13 dcap capbeam section depth 
14 bcap capbeam section breadth 
15 Acaplong capbeam longitudinal reinforcement area 
16 rcapstir capbeam stirrups ratio 
17 dpier pier section diameter 
18 Apierlong pier longitudinal reinforcement area 
19 rpierstir pier stirrups ratio 
20 dpile pile diameter 
21 Apilelong pile longitudinal reinforcement area 
22 rpilestir pile stirrups ratio 



 
4. MONO-DISCIPLINARY OPTIMIZATION MODEL 
 
4.1. Objective Function 
 
For bridge system, objective functions are always expressed as the total direct construction cost related 
to the total weight or volume of members of structure. In this study, the formula of objective function 
for bridge structural system optimization design can be stated as shown in Eqn. 4.1: 
 

଴ܥ ൌ ௖ܥ ൅ ௦ܥ ൌ ∑ ௖ܾ௜ݓ
ே
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N
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Where ܥ௖ and ܥ௦ are the cost of concrete and the cost of reinforcing steel, respectively. ݓ௖, ݓ௦ are 
the unit cost coefficients of each material. In this study, unit cost is assumed to be $75/m3 for concrete, 
$4,100/m3 for reinforcing bars. ܾ௜ and ݄௜ are the section dimensions of member i, ܮ௜ is its length 
and finally ܣ௦ଵ,௜, ܣ௦ଶ,௜ are the section area of stirrups and the longitude reinforcement, respectively. 
 
4.2. Constraint Functions 
 
In this study, constraint functions are formulated in terms of corresponding codes[8]-[10] demands 
respectively. In every constraint function, dead loads and corresponding live loads or seismic loads 
combination are considered and act on the structure. Constraints of this optimization problem are 
listed in Tab. 4.1. 
 
Table 4.1. Constraints for bridge optimization 
Functions Description Variable Number 
G1,G2 combined strength at location of maximum positive and negative moment of 

girder respectively 
1~9 

G3 shear strength in the webs of girder 1~9 
G4 transverse flexural strength in the slab of girder 1~9 
G5 maximum deflection of girder 1~9 
G6 axial compression stability of bearings 11,12 
G7 vertical compression deformation of bearings 11,12 
G8 anti-sliding stability of bearings 11,12 
G9 flexural capacity of normal cross section of capbeam 13~15 
G10 shear capacity of oblique cross section of capbeam 13~16 
G11 axial compression capacity of piers 17,18 
G12 eccentric compression capacity of normal cross section of piers under E1 seismic 

actions of piers 
17,18 

G13 displacement capacity under E2 seismic actions of piers 17,18,19 
G14 shear capacity oblique cross section of piers 17,19 
G15 ultimate plastic rotation capacity of plastic hinge zone under E2 seismic actions 

of piers 
17,18,19 

G16 axial compression capacity of piles 20 
G17 eccentric compression capacity of normal cross section of piles 20,21 
G18 shear capacity oblique cross section of piles 20,22 
 
It should be note that, in this optimization problem, the essential difference from other optimization 
problems which just contain carrying capacity constraints is the constraint functions G13 and G15. 
They are special aseismic constraints for resisting E2 seismic loads in terms of the performance-based 
seismic design requirements. Considering the present research situation of performance-based design, 
displacement based seismic design concept is adopted in Ref. [8] to formulate constraints G13 and 
G15 as shown in Eqn. 4.2 and Eqn. 4.3: 
 

G13 ൌ ∆ௗ െ ∆௨ ( 4.2) 
 

G15 ൌ ௣ߠ  െ  ௨ (4.3)ߠ



 
Where, ∆ௗ is the displacement demand taken along the local principal axis of piers under E2 seismic 
loads, ∆௨ is the displacement capacity taken along the local principal axis corresponding to ∆ௗ of 
piers. ߠ௣ is the plastic rotation of potential plastic hinge zone under E2 seismic loads, ߠ௨ is the 
ultimate plastic rotation capacity of plastic hinge zone corresponding to ߠ௣ of piers. Since ∆ௗ, ∆௨, 
௣ߠ  and ߠ௨  are all the nonlinear responses about seismic loads, nonlinear numerical model of 
pier-capbeam frame is built with finite element method in this study. ∆௨ and ߠ௨ are evaluated by 
inelastic quasi-static “pushover” analysis until the frame reaches its limit of structural stability. ∆ௗ 
and ߠ௣  are evaluated by nonlinear static analysis. This two evaluation processes are the most 
time-consuming parts in the optimization process and the computational cost of this two evaluation 
processes are sharply higher than any other evaluations. Hence, method which involves least 
evaluation number will be the most efficient method for this bridge optimization problem. 
 
 
5. DECOMPOSITION FOR BRIDGE SYSTEM 
 
In this study, based on CO method, the bridge design optimization process is decomposed into 
double-level nonlinear optimization problem: system level and disciplinary level. Like the 
mono-disciplinary optimization problem illustrated in Section 3.1, objective functions in system level 
are all expressed as the total direct construction cost for easy comparison. Constraints in system level 
are all interdisciplinary consistency constraints with share variables and coupling variables. For 
disciplinary level, two decomposition methods are presented as below: 
 
5.1. Disciplinary-oriented Decomposition  
 
For disciplinary-oriented decomposition method, bridge optimization design process is decomposed 
into three disciplines: carrying capacity discipline, E1 earthquake discipline and E2 earthquake 
discipline. The constraints contained in every discipline are listed in Tab. 5.1.  
 
Table 5.1. Constraints in disciplines 
Disciplinary Name Constraints Variable Numbers 
Carrying capacity G1~G7, G9~G11 , G16 1~9, 11,12, 13~18, 20 
E1 earthquake G12 17,18 
E2 earthquake G8,G13,G14,G15,G17,G18 11,12, 17~22 
 
Considering the coupling among the three disciplines, variable 11, 12, 17, 18, 20 are selected as share 
variables; for carrying capacity discipline, mass of superstructure, mass of capbeam and pile length are 
selected as coupling variables during optimization design process. 
 
5.2. Component-oriented Decomposition 
 
For component-oriented decomposition method, bridge design optimization is decomposed into three 
subsystems: superstructure subsystem, bearing subsystem and substructure subsystem. The constraints 
contained in every subsystem are listed in Tab. 5.2. 
 
For superstructure subsystem, total mass are taken as coupling variables; for bearing subsystem, 
vertical reaction force, maximum of concentrated reaction force in horizontal directions are taken as 
coupling variables; for substructure subsystem, vertical reaction force, maximum of concentrated 
reaction force in horizontal directions are taken as coupling variables. 
 
Table 5.2. Constraints in subsystems 
Disciplinary Name Constraints Variable Numbers 
Superstructure subsystem G1~G5 1~9 
Bearing subsystem G6~G8 11,12 
Substructure subsystem G9~G18 12~22 



 
5.3. Qualitative Comparison of Two Decomposition Methods 
 
For these two decomposition methods, the former can greatly meets the division of labour and gives 
full play to the professional skill of specialists of various disciplines during the design procedure of 
bridge. Designers export at one discipline can easily control the optimization process of their 
discipline especially when concurrent computation is applicable among different departments for one 
design problem. However, there is large number of share variables move to system level. This will 
induce more iterations compared with the same optimization problem system level have fewer number 
of share variables. The later take every component as a subsystem. This measure makes the design 
variables in one subsystem differ from that in others because all the design variables are component 
dependent. Design variables in this decomposition method are all local variables. Subsystems are 
coupled via coupled state variables such as mass, reaction force or moment. Comparing with 
disciplinary-oriented decomposition method, component-oriented decomposition method can induce 
fewer variable numbers in system level, whereas the coupled state variables involved in system level 
are functions with respect to design variables explicitly or implicitly. Hence, the optimization 
efficiency adopting component-oriented decomposition method is relied on the design variable 
numbers which state variable related to and complexity between the state variable and design 
variables. 
 
 
6. RESULTS COMPARISON 
 
6.1. Optimizer Selection 
 
Assuming all the variables are real continuous variables, for system level and three disciplines, all the 
optimization procedures are performed by a gradient-based strategy: Sequential Quadratic 
Programming-NLPQL. Note that NLPQL is an optimization algorithm gradient is needed in every step 
of iteration. In this study, gradient is replaced with difference coefficient for constraint functions 
which is evaluated by finite element method. 
 
It should be point out that in carrying capacity discipline, the disciplinary optimization process can be 
subdivided into four sequential optimization problems: girder optimization, capbeam optimization, 
pier optimization and pile optimization. This is mainly because: for carrying capacity discipline, 
bridge system just suffers constant vertical loads transferred from top down. Correspondingly, the 
optimization design sequence just needs to follow the order. 
 
6.2. Optimization Results 
 
In order to examine the efficiency of CO and to compare the optimization performance of the two 
proposed decomposition methods, mono-discipline optimization algorithm and the proposed methods 
are implemented to the same bridge design problem. Variables to both strategies are initialized with 
same values from a conservative design. Optimum results from the three methods are listed in Tab. 
6.1. 
 
As shown in Tab. 6.1, CUP time rate is the rate of CUP computational time of corresponding method 
to that of Mono-discipline method. Evaluation Number Rate is the rate of evaluation number of 
nonlinear finite element analysis in corresponding method to that of Mono-discipline method. Note 
that for the same optimization problem, the objective value from the mono-discipline design 
optimization method is very close to the value from the CO(both disciplinary-oriented decomposition 
and component-oriented decomposition), whereas the computation cost of CO is significantly less than 
the execution time of mono-discipline design optimization. This is mainly because for CO, rather than 
mono-discipline design optimization, there are fewer variables for every discipline or subsystem. It 
makes the subsystem optimization process easier to convergence than a multi-variables optimization 
problem.  



 
Table 6.1. Results of optimization 
Item Mono-discipline Disciplinary-oriented 

decomposition 
Component-oriented 
decomposition 

Starting cost (per span) $46,478 $46,478 $46,478 
Optimum cost(per span) $42,628 $41,817 $42,257 
CUP time rate 100% 69% 46% 
Evaluation Number Rate 100% 56% 42% 
 
We can see from the results, no matter computation cost or evaluation number, that of 
component-oriented decomposition method are all better than that of disciplinary-oriented 
decomposition. It means that for this kind of optimization problems, the predominant influence is the 
evaluation number of the nonlinear finite element analysis, whereas the calculation in optimizer is not 
the main control factor to computation efficiency. Hence, the component-oriented decomposition 
method with which fewest evaluation number of nonlinear finite element analysis have to performe is 
the best selection for this kind of bridge optimization problems. 
 
 
CONCLUSION 
 
Bi-level optimization method collaborative optimization is introduced to deal with the Bridge 
optimization design problem considering aseismic requirements. Two decomposition methods are 
proposed: disciplinary-oriented decomposition and component-oriented decomposition. For 
disciplinary-oriented decomposition, bridge system design is decomposed into three disciplines: 
carrying capacity discipline, E1 earthquake discipline and E2 earthquake discipline. For 
component-oriented decomposition, bridge system design is decomposed into three subsystems: 
superstructure subsystem, bearing subsystem and substructure subsystem. In order to study the 
efficiency of the decomposition methods, these two methods and mono-discipline optimization 
algorithm are applied to an example of multi-span continuous girder bridge optimization design 
problem. All the optimization procedures are performed by a gradient-based strategy: Sequential 
Quadratic Programming-NLPQL. It is observed that for optimization problems such as bridge seismic 
design, the computation cost of CO is significantly less than the execution time of mono-discipline 
design optimization when achieving a similar optimization results. The predominant influence of 
efficiency for this kind of optimization problems is the evaluation number of the nonlinear finite 
element analysis. The efficiency of component-oriented decomposition method is better than that of 
disciplinary-oriented decomposition method for bridge optimization problem considering aseismic 
requirements. 
 
Note that, in this study, variables are assumed to be real and continuous, whereas design variables are 
discrete due to the requirements of industry regulations and the availability of members in standard 
sizes. This kind of requirements forces the optimization processes into discrete optimization problem. 
Sequentially, optimization strategy which can handle discrete variables has to been adopted. In order 
to verify efficiency, more study is needed. 
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