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SUMMARY: 
The role of seismic fragility functions in the PBEE probabilistic framework formula is revisited, and four 
categories of seismic fragility are identified. The analytical formulae of seismic demand and damage fragility 
functions are derived respectively, in which the analytical relationships of the median and the dispersion of the 
two kinds of fragility models with the parameters of probabilistic seismic demand model (PSDM) and 
probabilistic seismic capacity model (PSCM) are found. By applying the two analytical formulae of seismic 
fragility functions to the IM-based analytical formulation of seismic risk, it is discovered that the analytical 
formulae of seismic demand and damage hazards are two specific cases of the IM-based analytical formulation 
of seismic risk. A RC frame structure designed according to the current Chinese codes is taken as a case study. 
The seismic performance of the code-conforming reinforced concrete frame buildings is evaluated by the 
analytical seismic risk formulae. 
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1. INTRODUCTION 
 
The new-generation performance-based earthquake engineering (PBEE) developed in the PEER center 
involves explicit evaluation of system-level performance of civil infrastructures and rigorous treatment 
of randomness existing in earthquake strong motions, structural properties, physical damage, and 
economic and human losses, as well as uncertainties due to the lack of knowledge and statistical 
samples (Porter 2003; Moehle and Deierlein 2004). The role of seismic fragility functions in the PBEE 
probabilistic framework formula is revisited, and four categories of seismic fragility are identified, 
namely, seismic demand fragility, structural capacity fragility, seismic damage fragility, and seismic 
loss fragility. With the assumptions of lognormal distributions of seismic demand and structural 
capacity, as well as the assumption of power relation of conditional median EDP and IM, the 
analytical formulae of seismic demand fragility and seismic damage fragility functions are derived 
respectively from the viewpoint of product-format probability demand and capacity models, in which 
the analytical relationships of the median and the dispersion of the two kinds of fragility models with 
the parameters of probabilistic seismic demand model (PSDM) and probabilistic seismic capacity 
model (PSCM) are found. By applying the two analytical formulae of seismic fragility functions to the 
IM-based analytical formulation of seismic reliability under the assumption of Cauchy-Pareto 
approximation of seismic hazard function (Cornell et al. 2002), it is discovered that the analytical 
formula of seismic demand hazard and the analytical one of seismic damage hazard are two specific 
cases of the IM-based analytical formulation of seismic reliability. A RC frame structure designed 
according to the current Chinese codes is taken as a case study. The fragility curves of seismic demand, 
structural capacity, and seismic damage of the structure are obtained, and the seismic risk curves of 
seismic demand only considering the record-to-record variability inherent in earthquake strong 
motions, and seismic damage with also consideration of the building-to-building modeling uncertainty 
of structural capacity, are derived and compared. The seismic performance of the code-conforming 
reinforced concrete frame buildings in mainland of China is evaluated by the analytical seismic risk 



formulae, coupled with the rigorous utilization of nonlinear static and dynamic analysis and efficient 
random simulation techniques. 
 
2. THE ROLE OF SEISMIC FRAGILITY FUNCTIONS IN PEER PBEE FRAMEWORK 
 
The PEER PBEE methodology is based on a so-called framework formula that estimates the mean 
annual frequency (MAF) of a performance measure exceeding a specified threshold. Originally 
proposed by Cornell and Krawinkler (2000), the formula now has the commonly accepted form 
(Porter 2003; Moehle and Deierlein 2004): 
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where, im = intensity measure (e.g. the peak ground acceleration PGA or the spectral acceleration Sa 
at the fundamental period T1); edp = engineering demand parameter (e.g. the peak interstory drift 
angle); dm = damage measure corresponding to a damage state (e.g. the slight damage state); dv = 
decision variable (e.g. financial loss, casualty, downtime); G(x|y) = G(Xx|Y= y) is the conditional 
complementary cumulative distribution function (CCDF) of random variable X given Y= y; (z) 
denotes the mean rate of event {Zz} per year; dG(x|y) and d(z) are the differentials of G(x|y) and 
(z), respectively. 
The triple-integral formula can be de-coupled into successive double or single integrals based on the 
Markovian assumption of one step memory for each of the intermediate measures. Specifically, 
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gives the output of probabilistic seismic safety analysis (PSSA), i.e., MAF of reaching or exceeding a 
damage state {DMdm}, whereas 
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gives the result of probabilistic seismic demand analysis (PSDA), i.e., MAF of reaching or exceeding 
a specified demand level {EDPedp}. 
The PEER’s PBEE framework formula disaggregates the problem of probabilistic seismic risk 
assessment (PSRA) into four models: the hazard model that predicts the intensity measure IM, (im); 
the demand model that predicts the structural response referred to as engineering demand parameter 
EDP, G(edp|im); the capacity model that predicts the damage measure DM, G(dm|edp); and finally the 
loss model that predicts the decision variables DV, G(dv|dm). If we take IM (such as PGA or Sa) as 
the input variable of a seismic fragility function corresponding to EDP, then the conditional 
distribution G(edp|im) can be called “demand fragility function”. Similarly, the damage and loss 
fragility functions corresponding to DM and DV respectively can be derived from the inner integrals 
in Eqn. 2.1: 
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Substituting Eqn. 2.4 and Eqn. 2.5 into Eqn. 2.1 and Eqn. 2.2 respectively, the latter two formulae are 
reduced to 
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Note that Eqn. 2.6 and Eqn. 2.7 have the same “structure” as Eqn. 2.3, they all are specific forms of 
the general risk formula “risk=hazardfragility”. Actually, we can treat the events {DVdv}, {DMdm} 
and {EDPedp} as reaching or exceeding a limit state through performance measures DV, DM and 
EDP, respectively, so conditional probabilities G(dv|im), G(dm|im) and G(edp|im) can be denoted as a 
general fragility function 
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then Eqn. 2.3, Eqn. 2.6 and Eqn. 2.7 would take the same formulation as 
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where, IM(x)=(im=x). Eqn. 2.9 is nothing but the well-known probability interference formula in 
structural reliability theory (Melchers 1999). 
In Eqn. 2.9, the seismic fragility is customarily modeled by a lognormal cumulative distribution 
function (CDF) (Ellingwood 2001; Wen et al. 2003): 
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in which [] is the standard normal probability integral, mR is the median fragility, and R=lnR is the 
logarithmic standard deviation (or dispersion) of the fragility. 
In the following section, we will derive the analytical formulations as well as their parameter 
relationships of seismic demand fragility and seismic damage fragility functions. To simplify the 
problem, we will not consider the loss fragility any more, but the results of this paper can be easily 
extended to the case of seismic loss fragility and risk assessment. 
 
3. ANALYTICAL FORMULATIONS OF SEISMIC FRAGILITY FUNCTIONS 
 
3.1. Analytical formulation of seismic demand fragility 
 
The seismic demand fragility is the conditional probability of reaching or exceeding a specific value of 
the demand limit state without considering capacity uncertainty: 
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where dLS is the specific value of the seismic demand D which defines the determinative threshold of 
one limit state. Due to the record-to-record variability in earthquake strong motions, the seismic 
demand D also is random over any suite of ground motion records applied to the structure. For a given 
value of the ground motion intensity measure, such as spectral acceleration, the conditional demand 
model is normally modeled by a product of its conditional median mD with a random variable εD: 
 

D DD m    (3.2) 
 
where εD is a lognormal random variable with median equal to unity and conditional logarithmic 
standard deviation σlnε = βD|Sa, the functional relationship between conditional median md and spectral 
acceleration Sa generally follows a power law (Cornell et al. 2002): 
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where a and b are regression parameters. The parameters a, b, and βD|IM can be determined by linear 
regression of lnmD vs. lnIM from the results of any probabilistic seismic demand analysis (PSDA) 
method, e.g. cloud analysis, strip analysis, or incremental dynamic analysis (IDA) (Jalayer 2003). 
With the above assumptions, it follows that Eqn. 3.1 can be further derived as: 
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in which 

DRm  and 
DR  are the median and dispersion of the demand fragility, respectively. 

Obviously, the parameters of the lognormal demand fragility model can be re-formulated as: 
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where imd = (dLS/a)1/b is the IM value corresponding to the threshold dLS of one limit state. From Eqn. 
3.5 it can be seen that the median

DRm of the demand fragility is equal to this specific spectral 

acceleration value imd, which controls the location of the demand fragility curve; whereas the 
dispersion

DR controls the shape of the demand fragility curve. 

 
3.2. Analytical formulation of seismic damage fragility 
 
The damage fragility considers the randomness existed both in demand and capacity. The damage 
fragility function can be defined as the conditional failure probability of seismic demand reaching or 
exceeding random structural capacity given a specific value of strong motion intensity: 
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Again we assume that the structural capacity C is a lognormal variable with median mC and dispersion 
βC, then the CDF of the structural capacity C is  
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With the lognormal assumptions of both demand and capacity defined above, the damage fragility Eqn. 
3.7 can be derived according to the basic principle in structural reliability theory (Melchers, 1999) as 
 

2 2
|

ln ln
( )

C

C D
R

C D IM

m m
F x

 

    
  

 (3.9) 

 
Substituting Eqn. 3.3 into the above Eqn. yields 
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where 

CRm  and
CR  are the median and dispersion of the damage fragility, respectively. Obviously, 

the parameters of the lognormal damage fragility model can be re-formulated as: 
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where 1/( / )C b

c

m m aim  is the IM value corresponding to the demand level d which is equal to the 

median capacity mC. From Eqn. 3.11 it can be seen that the median
CRm of the damage fragility is equal 

to this specific intensity measure value Cmim , which controls the location of the damage fragility 
curve; whereas the dispersion 

CR  controls the shape of the damage fragility curve. It is obvious that 

if the randomness in structural capacity is not considered, then Eqn. 3.12 will reduce to Eqn. 3.6. 
 
4. APPLICATIONS OF ANALYTICAL FRAGILITY FUNCTIONS TO PROBABILISTIC 
SEISMIC RISK ANALYSIS 
 
4.1 Analytical formulation of probabilistic seismic risk at the IM level 
 
Generally assumed to be a Type II distribution of the largest values, the probability distribution of the 
annual extreme earthquake strong motion intensity measure (e.g., spectral acceleration) can be 
approximated over the range of significance by (Cornell et al. 2002): 
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where u = scale parameter, k = shape parameter, constant k0 = uk. 
Eqn. 4.1 represents a linear relationship on a log-log plot in the region of interest, i.e., where the 
contribution to the total probability integral is greatest (Cornell et al. 2002). 
Substituting Eqn. 2.10 and Eqn. 4.1 into Eqn. 2.9 and carrying out the integral, one can obtain the 
analytical formulation of IM-based seismic risk problem (Cornell 1994; Cornell 1996a, 1996b): 
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4.2. Analytical formulation of seismic demand hazard 
 
With the analytical formulation of the demand fragility, the analytical formulation of the demand 
hazard can be directly obtained by substituting Eqns. 3.5 and 3.6 into the analytical formulation of the 
seismic risk Eqn. 4.2: 
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The above displacement-based explicit format for probabilistic seismic demand analysis (PSDA) is 
derived firstly by Bazzurro et al. (1998), and widely applied in PSDA, e.g., Shome (1999), Luco 
(2002), etc. 
 
4.3. Analytical formulation of seismic damage hazard 
 
Similarly, with the analytical formulation of the damage fragility, we can obtain the analytical 
formulation of the damage hazard, or the limit state probability, directly by substituting Eqns. 3.11 and 
3.12 into the analytical formulation of the seismic risk Eqn. 4.2: 
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The above displacement-based explicit format for annual limit state frequency is used by PEER as a 
basis for probabilistic performance-based assessment and design in the framework of demand and 
capacity factor design (DCFD) methodology adopted by FEMA350 (FEMA 2000a; Cornell et al. 2002; 
Jalayer and Cornell 2003). 
 
5. CASE STUDY: A CODE-CONFORMING RC FRAME 
 
A five-storey RC frame structure was designed according to Chinese codes GB50011-2010 and GB 
50010-2002, which represented the typical mid-rise RC frame construction in China. The designed 
structure is located on firm rock (site Class II in GB50011-2010). The fortification intensity is degree 
VII, and the design characteristic period of the location site is 0.35s. The frame structure is in 
bi-axially plan configuration with negligible torsional eccentricities, as shown in Figure 1. The 
elevation of the case-study frame with its beam and column steel rebar layouts are shown in Figure 1. 
The design value of concrete compressive strength is 14.3MPa, whereas the design steel yield strength 
is 300MPa. 
A 2-D model is selected for nonlinear static and dynamic analyses. The analytical modeling and the 
finite element analysis are performed using OpenSees (Mazzoni et al. 2007). Each column and beam 
consists of a single force-based nonlinear beam-column element with four Gauss-Legendre integration 
points. The nonlinear beam-column elements are characterized by fiber sections, which are discretized 
in fibers of confined and unconfined concrete, and steel reinforcement. Using available material 
models in OpenSees, the reinforcing steel is characterized by the Giuffre-Menegotto-Pinto model 
(Menegotto et al. 1973), while the concrete behavior is modeled by a uniaxial model with degrading 
linear unloading/loading stiffness, and no strength in tension. Accounting for the level of confinement 
offered by the actual layout, diameter and spacing of stirrups, formulas developed by Scott et al. (1982) 
are used to characterize the behavior of core concrete. 
A total of fourteen material parameters are used to model the various structural materials, i.e., four 
parameters for the unconfined concrete (fcp,cover = peak strength, εcp,cover = the strain at peak strength; 
fcu,cover= the residual strength; εcu,cover=strain at which the residual strength is reached), four parameters 
for the confined concrete (fcp,core, εcp,core, fcu,core, εcu,core), and six parameters for the reinforcing steel 
(ES=initial stiffness, fy=yield strength, α=post yield to initial stiffness ratio, CR1, CR2, R0=the 
parameters controlling the transition from elastic to plastic branches). Two concrete parameters and 
four steel parameters are treated as deterministic values (εcp,cover=0.002, fcu,cover=0, CR1=0.925, 
CR2=0.15, R0=20, α=0), while the other eight parameters are taken as random variables. From elastic 



analysis, the first mode period T1 of the structure is 0.72s. 
 

 
 

b) Elevation view 

 
a) Plan view 

 

 
c) Steel rebar layout of beams and columns 

 
Figure 1. Case-study structure 

 
One hundred ordinary (defined here as closest distance to rupture greater than 10 km to avoid 
considering directivity pulse-type effects) ground motions are selected from the PEER-NGA database 
(http://peer.berkeley.edu/nga/) to represent the RTR variability. 
The parameters k and k0 are fitted through seismic hazard data at the design basis earthquake (DBE) 
and the maximum considered earthquake (MCE) intensity levels which have 10% and 2% 
probabilities of exceedance in 50 years, respectively. The power law models of PSHA for PGA and Sa 
are estimated by 
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The seismic demand is assessed using nonlinear time history analysis (NTHA) with the selected one 
hundred earthquake records. Regression of the NTHA results leads to the following power 
relationships: 
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The maximum interstory drift angle, θmax, is selected as capacity parameter. In order to quantitatively 
define limit states, pushover analysis is used to evaluate drift capacity. Four damage states, namely, 
slight damage (LS1), moderate damage (LS2), extensive damage (LS3) and complete damage (LS4) are 
considered. The first limit state, LS1, is defined as the linear limit of the global pushover curve, which 
represents the first significant change of global performance of the structure. The second limit state, 
LS2, is identified by the equivalent yield point, which is obtained by the idealized equivalent 
elasto-plastic system with energy absorption equivalent to that of the original system. The third limit 
state, LS3, is assumed as the peak shear resistance, while the last limit state, LS4, is assumed to 
correspond to the 20% reduced post-peak capacity or the ultimate point of the pushover curve. 
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To consider the randomness in structural properties, a random pushover approach (RPA) via a 
transformed correlation Latin Hypercube Sampling (TCLHS) algorithm is applied. Ten random 
variables (n=10) are considered in random pushover analysis, and one hundred structural samples 
(N=100) are generated. 
From the viewpoints of uncertainty modeling and propagation, βC contains two components of 
uncertainty: the aleatory component, βCR, and the epistemic component, βCU: 
 

2 2
C CR CU     (5.3) 

 
where βCR represents the results of structural uncertainty propagation, which is obtained using random 
pushover analysis procedure; while βCU arises from the assumptions in structural modeling and RPA, 
which are generally assumed to be specified values using expert judgments. In this paper, the 
epistemic uncertainty, βCU is assumed to be 0.2 for LSi (i=1,2,3,4) according to Wen et al. 2003. 
The distribution parameters for the threshold values for different limit states LSi (i=1,2,3,4) are: 
mC=0.26%, 0.73%, 1.44%, and 2.44% for LSi (i=1,2,3,4), while the corresponding βCR are 0.16, 0.05, 
0.08, 0.18, respectively. Substituting the values of βCU and βCR in Eqn. 5.3, βC are calculated as 0.26, 
0.21, 0.22, and 0.27 for LSi (i=1,2,3,4), respectively. 
For seismic demand fragility analysis, the deterministic limit state thresholds are identified according 
to GB50011-2010, which are defined as 0.18%, 0.40%, 0.83% and 2.00% for LSi (i=1,2,3,4), 
respectively. Using the analytical demand fragility functions (Eqns. 3.4-3.6), the seismic demand 
fragility curves are derived as shown in Figure 2 with their corresponding medians and dispersion 
listed in Table 1. For seismic damage fragility analysis incorporating the capacity uncertainty, the 
seismic damage fragility curves are generated using the analytical damage fragility functions (Eqns. 
3.10-3.12), as shown in Figure 2 with their medians and dispersions listed in Table 1. 
 
Table 1. Parameters of seismic hazard, demand fragility and damage fragility functions 

Limit 
states 

IM 

PSHA PSDA 
dLS 
(%)

PSCA 
Demand 
fragility 

Damage 
fragility 

k0 

(×10-5) 
k a b βD|IM

mC 

(%) 
βC DRm

(g)
DR  CRm

 (g) 
CR

LS1 
PGA 1.70 2.09 0.024 0.84 0.25

0.18 0.26 0.26
0.05 0.30 0.07 0.43

Sa 1.03 2.38 0.024 0.90 0.14 0.06 0.16 0.08 0.32

LS2 
PGA 1.70 2.09 0.024 0.84 0.25

0.40 0.73 0.21
0.12 0.30 0.24 0.39

Sa 1.03 2.38 0.024 0.90 0.14 0.14 0.16 0.27 0.28

LS3 
PGA 1.70 2.09 0.024 0.84 0.25

0.83 1.44 0.22
0.28 0.30 0.54 0.39

Sa 1.03 2.38 0.024 0.90 0.14 0.31 0.16 0.57 0.29

LS4 
PGA 1.70 2.09 0.024 0.84 0.25

2.00 2.44 0.27
0.80 0.30 1.02 0.43

Sa 1.03 2.38 0.024 0.90 0.14 0.82 0.16 1.02 0.34
 
 

 
a) LS1: slight damage b) LS2: moderate damage 

  



 
c) LS3: extensive damage d) LS4: complete damage 

  
Figure 2. Seismic demand and damage fragility curves 

 
Using Eqn. 4.3, the probabilistic seismic demand hazard curves for both PGA and Sa are derived, as 
shown in Figure 3, where seismic damage hazard points by using Eqn. 4.4 are also illustrated. In order 
to compare with each other, the limit state frequency values (seismic demand and damage hazards) are 
also listed in Table 2. It can be seen that the damage hazard values are relatively smaller than the 
corresponding demand hazard levels due to the existence of capacity variation and the higher median 
capacity identified by RPA. In addition, different choices of IMs (PGA or Sa) also have significant 
effects on seismic risk regardless of whether the limit states are deterministic or probabilistic. 
 
Table 2. MAFs for seismic demand and damage hazards 
Limit states λEDP using PGA λEDP using Sa λDM using PGA λDM using Sa 

LS1 1.30×10-2 1.05×10-2 6.43×10-3 4.92×10-3 

LS2 1.79×10-3 1.26×10-3 4.58×10-4 2.99×10-4 

LS3 2.91×10-4 1.84×10-4 8.45×10-5 5.05×10-5 

LS4 3.25×10-5 1.79×10-5 2.44×10-5 1.37×10-5 

 

a) Seismic demand and damage hazard  
using PGA 

b) Seismic demand and damage hazard  
using Sa 

  
Figure 3. Seismic demand and damage hazard curves 

 
6. CONCLUSION 
 
In this study, through the derivation of the analytical functions and their parameter relationships of the 
demand fragility and the damage fragility, it is found that the demand hazard and the damage hazard 
are two specific formulations of the general IM-based seismic risk problem, depending on the chosen 
analytical fragility functions. Therefore, the force-based seismic risk formulation for intensity measure 



(IM) and the displacement-based seismic risk formulations for engineering demand parameter (EDP) 
and damage measure (DM) are consistent in nature. 
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