
Dynamic behaviour of reinforced soils and 
and deep foundations. Theoretical analysis and 
experimental evidence 
 deep foundations    
Theoretical analysis and experiments 
 
 
J. Soubestre, C. Boutin & S. Hans      
Université de Lyon, ENTPE/CNRS - France   
 
M. Dietz, L. Dihoru, E. Ibraim & C. Taylor 
University of Bristol, UK   
 
 

	
  

 
 
SUMMARY:   
The dynamic response of soil-pile-group systems are modelled both analytically, using homogenisation theory, 
and physically, using a shaking table to excite a soft elastic material periodically reinforced by vertical slender 
inclusions. A large soil/pile stiffness contrast is shown to lead to full coupling in the transverse direction of the 
bending behaviour from the piles and the shear behaviour from the soil. Analytically derived performance 
predictions capture important characteristics of the experimentally observed response.  Thus the shear/bending 
analytical modelling should provide a simple manner to design and describe soil/piles system submitted 
dynamically to lateral ground motions.  
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1. INTRODUCTION 
 

The performance of the global behaviour of pile-reinforced soil when subjected to lateral ground 
motions has been a topic of research interest in recent decades (e.g. Makris and Gazetas (1992), 
Mylonakis and Gazetas (1999), Koo et al (2003)). Numerical finite element studies of pile-reinforced 
soils are generally conducted. However, the resulting models are complex and require significant 
computing time due to the fine mesh needed to account for the heterogeneities in the medium. In fact, 
the problem is ill-conditioned because of the high number of piles and the high contrast between the 
mechanical properties of the soil and the piles. Another limitation lies in the purely numerical form of 
the result. An understanding of the interactions and the effective influence of the pile parameters can 
only be extracted by statistical back-analysis of numerous simulations.  

An alternative approach is provided by the homogenisation of periodic media (Sanchez-Palencia’s, 
1980). Using asymptotic expansion techniques this method enables to derive the macroscopic 
equivalent behaviour of heterogeneous media. Herein, the key assumption lies in the separation of 
scale between the local size (i.e. here the distance between the piles) and the scale of evolution of the 
phenomena (i.e. the macroscopic deformation of the whole system). A direct application to piles/soil 
system leads to a classical behavior of composite, cf. Postel (1985). However, (Sudret and De Buhan, 
1999) (De Buhan and Hassen (2008), argued that the slenderness of the embedded reinforcement 
should ensure that the response will involve bending, the classical assumption in earthquake 
engineering practice. Assuming a sparse reinforcement concentration and a large reinforcement/matrix 
stiffness ratio, they developed a phenomenological ‘multiphase model’ that accounts for the bending 
effect. An analytical model linking the previous approaches and based on homogenisation was 
proposed by Boutin and Soubestre (2011) to characterize the dynamic behaviour of pile-reinforced 
soils. In accordance to the configuration of the problem, the model can evaluate the contributions 
made to the global behavior by both shear (in the soil) and bending (in the pile). Both homogenised 
and multiphase models belong to the framework of generalized elastic continua in which the 
integration of the bending is related to a scale effect.  



This paper presents the physical arguments at the basis of homogenised model proposed by Boutin and 
Soubestre (2011), and to provide an experimental validation of this latter. In section 2,  the main 
aspect of the theoretical modelling are summarised. In section 3, the findings of an experimental 
campaign conducted at the University of Bristol (UK) and under the auspices of the European 
Commission’s SERIES project in order to validate the analytical modelling approach are described. 

 
2. MODELING OF SOIL/PILES SYSTEM 
 
The study is concerned by a soil (index m) in which parallel, identical, homogeneous, straight beams, 
(index p) are periodically embedded with perfect contact (Figure 1.a). The dimension H along the 
beam axis is significantly larger than the lateral dimension l of the order of period (Figure 1.b). The 
typical size of the beam section h is considered of the same order than l so that the reinforcements are 
in finite concentration (however weaker concentration can also be addressed). In the sequel, Sp denotes 
the beam section, Sm the soil section, Γ the soil/beam interface ; the section of the period is S = Sp∪Sm, 
and its boundary is δS.  
 
The soil and the piles are assumed to present an isotropic linear elastic behavior. The two constituents 
are characterized by their Lame coefficients λq and µq (q = m, p) or, equivalently, by their Young’s 
modulus Eq and Poisson’ ratio νq. For soils, the (quasi-) linear assumption is reasonable for sufficiently 
small strains (say less than 10-4 m/m), which is the operational case for deep foundation systems. This 
small strain level corresponds also to small amplitude earthquakes, industrial induced vibrations, 
ambient noise vibrations, and geophysical testing conditions.  

 

 
 

Figure 1. Deep foundation : soil reinforced by piles. (a) Periodic distribution of parallel identical homogeneous   
reinforcing piles embedded in the soil matrix (b) Period geometry and dimensions.   

 
The geometry of the reinforced media naturally introduces  (i) a distinction between the axial direction 
(unit vector e1) and the in-plane directions of the section (e2, e3) and (ii) a scale parameter ε = l/L <<1, 
where the macroscopic length L (generally of the order of H) is much larger than l.  
 
 
2.1. Condition for shear/bending coupling 
 
The contrast between the elastic properties of the matrix and reinforcement plays a crucial role in the 
global behaviour of the reinforced soil. Without the matrix, the pile lattice is governed by bending ; if 
the matrix and the reinforcement materials present identical properties, we would have a homogeneous 
medium governed by shear. This extreme cases lead to think that, for a given contrast of properties, 
both shear and coupling effects would be of the same order of magnitude.   
 
The shear/bending model is based on the following idea : the (quasi)-static equilibrium and the elastic 
shear behaviour of the matrix (e.g. in the direction e2) reads : 
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while for a beam governed by bending, we have  : 
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Hence, the coupling between the beam behavior in bending and the shear behavior of the matrix 
occurs when the transverse forces in both constituents are of the same order of magnitude. This 
implies that pT = Sm

 mσ12, and therefore :  
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As Ip = O(l4), Sm = O(l2), and since the displacement in the soil and the reinforcement are of the same 
order of magnitude (pu = O(mu)), the contrast of the shear modulus µm/µp (or equivalently of the Young 
modulus Em/Ep) has to be of the order of magnitude of  the squared scale ratio ε2: 
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2.2. Global behavior derived by homogenization 
 
Such a strong contrasted situation can be handle through homogenization method (Sanchez-Palencia, 
1980). The physical variables are expressed with the relevant dimensionless space variables (x1/L, x2/l, 
x3/l) or more conveniently with the appropriate physical space variables (x1, y2, y3), where y2 = ε

-1x2 ; y3 

= ε
-1x3. The dynamic equilibrium of both constituents is rewritten in a two-scale formulation (variables 

x and y) and the asymptotic behavior reached when ε tends to zero is determined. In this purpose, the 
displacement, strain and stress fields of the reinforcement and the matrix are expanded asymptotically 
according to the powers of ε and the ε2-stiffness contrast is integrated. These expansions introduced in 
the balance equations leads to a series of problems in powers of ε. Their successive resolutions are 
performed up to derive the governing equations at the macroscopic scale.  
 
For a stiffness contrast µm = O(ε2µp) and for a bi-symetric period geometry (as is usual in practice 
when piles are arranged in a square or a hexagonal grid) the resolution, detailed in Boutin and 
Soubestre (2011), shows that for harmonic motions at circular frequency ω :  
– Along the axial direction, the macroscopic vertical motion U1(x1) of the soil/pile system is driven by 
the piles that suffers a classic kinematic of compression : 
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– As for the transverse direction (e2 for example), the macroscopic behavior of the soil/pile system 
undergoing a macroscopic horizontal motion U2(x1) reads: 
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where <ρ> = (ρp |S p|+ ρm |S m|)/|S| is the mean density of the reinforced. The shear coefficient G is 
equal to the shear modulus of soil µm corrected by a form parameter κ that accounts for the presence of 
the pile. Parameter κ can either be calculated by numerical FE simulations, or be approximated a by 
self-consistent estimate, Hashin et al. (1964), with an excellent accuracy for weak reinforcement 
concentration (rather usual in engineering  practice) : 
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Note that the behavior in transverse direction contains, (i) the classic shear term related to the 
distortion U2,x1 and, (ii) the unusual contribution due to bending involving the gradient of the curvature  
U2,x1x1x1. The bending inertia parameter is exactly that of the reinforcement (divided by the period 
section).   
 
This result shows that the reinforced media behaves as an inner bending media (Boutin et Soubestre, 
2011), that differs from the classic description of composites (Léné, 1978 – Sanchez-Palencia, 1980 – 
Postel, 1985). It gives a confirmation of the phenomenological « bi-phasic » approach developped by 
(de Buhan et al., 2008 – Sudret et al., 1999) and matches the mathematical aproaches of (Bellieud et 
al., 2002 - Pideri et al. 1997).  
 
 
2.3. Energy and boundary conditions 
 
The higher order of differentiation in the constitutive law requires enriched boundary conditions. 
These latter can be identify through the energetic formulation of the medium at the macrsoscopic 
scale. For an infinite layer of reinforced soil of height H along e1, taking the product of the equilibrium 
equation by the motion U2 and integrating over the height, one obtains after twice integration by parts 
(and dropping index 2):  
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where pM = - EpIpU,x1x1  is the  momentum developed in beams. The energy accounts for kinetic energy 
and elastic energy related to both shear and bending deformations. It balances the work produced at 
the boundary (x1 = 0 and x1 = H) by (i) the mean stress vector ‹σ12› submitted to the motion U2 on the 
one hand, and (ii) by the momentum pM2 submitted to the pile section rotation U2,x1 on the other. 
Hence, two boundary conditions must be specified at each extremity: one in terms of displacement or 
stress as for continuous media, and one in terms of rotation or momentum as for beams. By 
construction of the macroscopic modelling, the interpretation of these latter conditions is directly 
linked to the actual conditions imposed on the reinforcement.  
 
 
3. EXPERIMENTAL VALIDATION 
 
An experimental campaign was carried under the auspices of the European Commission’s SERIES 
project to validate the theoretical model. Tests were conducted using the shaking table at the 
University of Bristol Earthquake and Large Structures (EQUALS) Laboratory. The objective was to 
identify and quantify the actual bending effect due to the reinforcement under transverse motions by 



analysing the spectral response of a reinforced matrix subjected to transverse excitation.  
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Figure 2. Scheme of the tested system and overview of the experimental set up. 
 
3.1. Physical model 
 
The physical model (Figure 2) is constructed from analogue materials that match the basic 
assumptions of the theoretical modelling, namely: linear-elastic matrix and reinforcement with large 
stiffness contrast and perfect adherence at their interface.   
 
The matrix was a polyurethane foam block, 2.13 by 1.75 by 1.25m tall, and of density ρm = 48kg/m3. 
From preliminary characterisation, tests the foam presents a linear elastic behaviour up to strain of  4% 
with a Young’s modulus Em = 54kPa and a Poisson’s ratio νm = 0.11 (hence shear modulus µm = 
24.3kPa). The experiments on the reinforced foam block were conducted with a global distortion level 
of about 0.1% to ensure that the foam remained within its linear elastic range.  

The reinforcement was round, seamless, mild steel tube with 12.7mm outside diameter and 3.25mm 
wall thickness. The mechanical properties are Young’s modulus Ep = 210GPa, Poisson’s ratioνp = 0.3 
and density ρp = 7800kg/m3. To reflect the pile-group attributes commonly seen in practice, 35 
reinforcements (1.3m of lengths) were used on a seven by five grid at 250mm centers (Figure 2). An 
array of seven by five holes at 250mm centers was bored through the 1.25m deep block of foam. To 
ensure that the inclusions maintained good contact with the foam during testing, the bore diameter was 
1mm less than the diameter of the inclusions. 

The reinforcements were bolted to a base plate secured to the shaking table and the block of foam was 
adhered to the base plate. Hence, the model is clamped on bottom and free on top. 
 
Acceleration and strain were measured. Accelerometers were mounted on the shaking table (to record 
the excitation), on the uppermost surface of the foam, and on the 50mm free length of reinforcement 
protruding from the top of the foam. The longitudinal strains generated in six of the 35 lengths of 
reinforcement were monitored using strain gauges. All strain gauge cabling was fed into the interior of 



the reinforcement through small holes (≈1 mm diameter) drilled through the wall. The instrumented 
lengths of reinforcement were each fitted with six strain gauges. The strain gauges were deployed in 
three pairs : one at the reinforcement bottom (38.5mm from the base), one at the middle (625mm from 
the base) and one at the top (1211.5 mm from the base). Each gauges pair faced in opposite directions, 
aligned with the axis of the reinforcement to allow the measurement of bending strains.  

 

 
 

Figure 3. Transfer function modulus between accelerometers located on inclusions/table (left) and foam/table 
(right) for white noise excitations of different mean amplitudes: a0 (top), 1.5 a0 (middle) and 2 a0 (bottom). 

 
Different magnitudes of random (white noise) excitation with frequency content between 1Hz and 
30Hz were used to drive the shaking table. Harmonic sinusoidal waveforms were also used to excite 
the model at its eigen frequency for accurate mode shape determination. 

 
3.2. Theoretical model applied to a reinforced layer 
 
Assuming the experimental sample sufficiently large to neglect the boarder effects, the experiment can 
be interpreted by studying the transverse mode of an infinite lateral extension of reinforced matrix. 
The governing equation provided by the theoretical model reads :  
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The general form of the solution is :  
 

	
  

where δ1 and δ2 are the roots of the characteristic equation :  
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The clamped free boundary conditions imposes that:  
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Introducing these conditions in the general form of the solution provides the dispersion equation :  
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The numerical resolution gives the values of δ1 and δ2, then the eigenfrequency (and eigenmodes) 
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3.3. Theory versus experiments 
 
Comparisons between experiment and theory are based on the first mode response of the system.  
 
Figure 3 displays the acceleration response of the system to three 0-30 Hz horizontal white noise 
excitation tests of different mean amplitudes: a0, 1.5a0 and 2a0. The linear response of the system is 
confirmed by the independence of the transfer function modulus with the excitation level. Moreover 
the coincidence of TFs derived using accelerometers placed on foam and steel bars means that the 
whole system has an in-plane homogeneous kinematic for its first mode, as predicted by the theory. 
The measured eigen frequency f1,exp = 5.95Hz is close to the prediction of the shear/bending theoretical 
homogenised model (f1,th = 5.88Hz with the mechanical parameters of the reinforcement and foam) 
and clearly different from the pure shear (unreinforced foam: f1,th = 4.51Hz) or pure bending 
(negligible foam effect: f1,th = 6.56Hz) response. 

 

  
Figure 4.  Strain response of a reinforcement bar under harmonic loading at the 1st mode frequency. 

The system response to harmonic forcing at its first mode has also been recorded. The gauges indicate 
that there is no strain at the reinforcement top (T). At the bottom (B) and at the middle (M) we observe 



equal amplitude but opposite sign for opposite strain gauges, see Figure 4. Extension on one side of 
the inclusion and compression (of the same amplitude) on the other is clear evidence of bending. 
Moreover, the gauges 2B+ and 2M+ (or 2B- and 2M-) are in phase opposition.   
 

 
 

Figure 5. Mode shape (top) and curvature of the mode shape (bottom) of layer of media governed by bending 
(left), by shear (right) and by shear/bending coupling (centre, with the steeel and foam parameters). 

 
These experimental observations are compared with the theoretical modeling in the following way. On 
the one hand, the axial strain recorded by the gauges |pen(x1)| are related to the momentum in the 
reinforcement by the equality pM(x1) = |pen(x1)| EpIp. On the other hand, the momentum in the 
reinforcement is linked to the curvature of the mode shape Φ(x1) by  pM(x1) = -Φ’’(x1) EpIp. Thus, the 
experimental strain data should fit the calculated curvature of the first mode shape (derived with the 
theoritical model, with the foam and steel bars parameters, under clamped / free boundary condition).  
 
Such a comparison is presented on Figure 5. On the top  are presented the first mode shape of (i) pure 
bending model (no matrix, on the left), (ii) pure shear model (no reinforcement, on the right) and (iii) 
of the theoretical shear/bending model (foam and reinforcement, on the center). On the bottom the 
curvature are given for the three models and compared to the strain data. It clearly appears that the 
shear/bending model (center) well captures the observed strain distribution, while both others (left and 
right) fails qualitatively and quantitatively to reproduce the experimental data (in particular the sign 
inversion of momentum). 
 
These experimental observations provide a first validation of the theoretical modeling of inner 
momentum media. Furthermore, complementary experiments performed either with other type of 
boundary conditions, or with weaker number of reinforcement, are all in agreement with the theory. 
 
4. CONCLUSIONS  
 
An experimental programme has been conducted to validate the analytical modelling of pile-
reinforced soils developed through homogenisation theory. The validated model provides new insights 
in the dynamic behaviour of pile-reinforced soils in the elastic range. In particular it evidences the 
coexistence of bending and shear, yielding to an atypical transverse behaviour.  
 
The formulation of the inner bending (or shear bending) model is straight-forward and contains a few 
parameters easily related to the soil and reinforcement characteristics. Hence, the model can be used to 



perform parametric studies of pile-reinforced soil systems that cannot be achieved using the finite 
element method due to the problem being numerically ill-conditioned.  
 

In earthquake engineering these results can directly applications either in the design of piles, or in 
structural health monitoring (through ambient noise measurement) of existing deep foundations.   

It is worth mentioning that the shear/bending behaviour differs from the usual formulation based on 
the Wrinkler approach, as proposed by European norms. The key difference lies in the description of 
the soil effect on the pile. With the Wrinkler springs, the soil is assumed compressed by the piles 
(more precisely, the horizontal motion of the beam is taken as the driving variable for the soil 
response), conversely to the present analysis where the soil is sheared together with the piles. The 
experiments tend to prove that the design rules suggested by the norm do not account for the actual 
mechanism governing the soil/pile system (at least in the elastic domain). 

Future work will expand the scope of the analytical model by considering soil/pile interface laws and 
poro-elastic soil behaviour of the soil. 	
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