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SUMMARY:  
The modelling of seismic load is a major topic that has to be addressed thoroughly in the framework of 
performance based seismic analysis and design. The sustained dissemination of database of recorded 
accelerograms along with the increasing number of strong-motion networks installed worldwide revealed that the 
current methodologies for simulating artificial earthquakes accelerograms do not allow for properly reproducing 
natural variability. As a consequence, the resulting structural response analysis can be misleading. Recently, a 
methodology for simulating artificial earthquake accelerograms matching mean and mean standard deviation 
response spectra, given either by attenuation relationships or determined by a selected strong-motion database, 
has been proposed by the last two authors. In this paper the method is extended to simulate high-variable ground 
motion accelerograms whose response spectrum will match a target response spectrum along with its prescribed 
variability and also a selected model of correlation of spectral acceleration values at different frequencies.  
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1. INTRODUCTION 
 
Seismic analysis of ordinary structures is usually performed via the design response spectrum.  For 
structures that exhibits nonlinear behaviour the direct integration of equation of motion in conjunction 
with the simulation of appropriate time-histories is usually preferred. Unfortunately, international 
seismic codes do not give a method for generating the earthquake time-histories furnishing only the 
spectrum-compatible criteria that have to be satisfied. As a consequence, several methods have been 
proposed in literature coping with the generation of spectrum-compatible accelerograms. Most 
common approaches rely on the modeling the seismic action as a realization of a stationary or quasi-
stationary stochastic process. Accordingly, by modelling the seismic input as a stationary Gaussian 
process, the spectrum compatible power spectral density is first determined. Vanmarcke and Gasparini 
(1977) pointed-out the fundamental relationship between the response spectrum and the power spectral 
density of the input via the “first passage problem”. Based on this relationship various procedures have 
been proposed in literature for determining the spectrum compatible power spectral density (see e.g. 
Vanmarcke and Gasparini, 1977; Kaul, 1978; Cacciola et al., 2004). After determining the power 
spectral density of the base acceleration, samples of spectrum compatible time histories can be 
simulated through the superposition of harmonics with random phase (Shinozuka and Deodatis, 1988). 
Even if the above-described approaches represent the seismic action reliably reflecting its inherent 
random nature, it suffers the major drawback of neglecting the nonstationary characteristics of the real 
records.   
It is well known that the dynamic response of nonlinear structures is highly influenced by the 
nonstationary behavior of the input (Yeh and Wen, 1990; Wang et al. 2002; Spanos et al. 2007a; 
Spanos et al. 2007b). Thus, more reliable simulations have to take into account the time variability of 
both intensity and frequency content of the ground motion. Considering an earthquake time history as 
a realization of a nonstationary stochastic process, Spanos and Vargas Loli (1985) derived an 
approximate analytical expression of the spectrum compatible evolutionary power spectrum. The 



authors first proposed a relationship between the target response spectrum and the evolutionary power 
spectrum whose parameters are then determined through an optimization procedure. The simulated 
time-histories are adjusted a posteriori in order to match the response spectrum. The matching has 
been recently improved by Giaralis and Spanos (2009) through a wavelet approach. Generation of 
nonseparable artificial earthquake accelerograms has been also proposed by Preumont (1985). The 
method assumes an empirical model of the evolutionary power spectral density function in which the 
high frequency components are magnified in the early part. After determining the approximate 
evolutionary spectrum the simulated accelerograms are then iteratively corrected. The above 
mentioned methods allow to simulate nonstationary artificial earthquakes whose nonstationary 
features are strictly related to the selected model of the evolutionary power spectral density function. 
Recently, a procedure for correcting recorded accelerograms through the superposition of a corrective 
quasi-stationary random process has been proposed by Cacciola (2010) and then extended by Cacciola 
and Deodatis (2011) for correcting fully non-stationary vectors of random processes. The advantage of 
the latter two procedures is that, after the evolutionary response-spectrum-compatible power spectral 
density function is determined, the simulated accelerograms do not require any further iteration.  
The above methodologies for simulating artificial accelerograms possess the common drawback that 
the simulated time-histories do not manifest the variability observed for real earthquakes. Specifically, 
even if the accelerograms are simulated through a pertinent stochastic approach, the dispersion of 
ground motion parameters such as Peak Ground Acceleration (PGA), Arias Intensity (AI), Cumulative 
Absolute Velocity (CAV) as well as the spreading about the mean response spectrum are much less 
than those ones observed for natural accelerograms. This is mainly due to the fact that recorded 
accelerograms, even if they possess the same magnitude and distance epicentral, have strongly 
different energy distributions, with different ground motion parameters. On the other hand, the 
simulated accelerograms are generally determined from a unique power spectral density function 
leading to ground motion time histories with very similar joint-time frequency distribution.  This 
problem has been recently addressed by Pousse et al. (2006) for simulating accelerograms through a 
stochastic approach by using the K-Net Japanese database. The basic idea of this approach is to define 
an evolutionary power spectral density function possessing random variables determined through 
empirical attenuation equations. Recently, Rezaeian and Der Kiureghian (2010) proposed a method for 
simulating synthetic ground motion time histories through a parameterized stochastic model based on 
a modulated filtered white-noise process. The parameters of the model are random variables calibrated 
on a set of recorded earthquakes. These models cannot be used directly for design purpose since they 
in general do not satisfy the spectrum-compatible criteria imposed by seismic codes and to this aim 
they need a proper calibration or filtering. In this regard very few contributions have been proposed to 
determine the evolutionary response-spectrum-compatible power spectral density function (see e.g. 
Spanos and Vargas Loli, 1985; Preumont, 1985; Cacciola 2010; Cacciola and Deodatis, 2011, 
Cacciola and Zentner, 2012). Moreover, various studies (Inoue and Cornell 1990, Baker and Cornell 
2005, Baker and Jayaram 2008, Wang 2011), showed that recorded accelerograms manifest a certain 
correlation among the spectral acceleration values and the importance of this quantity in the reliability 
of structures has been also pointed out (see e.g. Baker and Cornell 2005). Recently, Wang (2011) used 
the correlation of spectral acceleration as a further criteria to select natural accelerograms compatible 
with a given response spectrum. Up to now, such correlation has not been taken into account in the 
simulation of artificial earthquakes. In this paper a procedure to simulate fully non stationary 
accelerograms that are compatible with given target mean and mean+standard deviation response 
spectral and also consistent with a selected correlation of spectral accelerations is proposed. To this 
aim an evolutionary power spectral density function with random correlated coefficients is introduced. 
The statistics of the random coefficients are determined by the knowledge of the mean+standard 
deviation response and prescribed correlation coefficients of acceleration spectral values. 
 

2. SIMULATION OF FULLY NON-STATIONARY RESPONSE-SPECTRUM-COMPATIBLE 
ACCELEROGRAMS 

Let consider ground motion time-history as a realization of a zero-mean Gaussian process fully 
defined by the evolutionary spectrum (Priestley, 1981) 
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where ( , )A t  is the non-separable frequency dependent modulating function and ( )G   is the 

stationary power spectral density function. In the case in which ( , ) ( )A t A t   the process is called 
uniformly modulated or quasi-stationary and possesses the feature that only the amplitude varies with 
respect to time, while the zero-crossing rate is constant over the time. Although, various models of 
non-separable evolutionary power spectral density functions have been proposed in literature, see e.g. 
Cacciola (2011) they cannot be used for design purpose since they do not satisfy the prescriptions 
imposed by the seismic codes. Therefore, evolutionary models have to be corrected to become 
response-spectrum-compatible. Recently, Cacciola and Zentner (2012) extended the procedure 
proposed by Preumont (1985) to modify any evolutionary spectrum leading to the simulation of fully 
non-stationary response-spectrum-compatible accelerograms. The procedure requires the definition of 
the non-separable frequency dependent modulating function ( , )A t  and the evaluation of the 

stationary spectrum compatible power spectral density function ( )SG  . The non-separable frequency 
dependent modulating function can be selected among the available models proposed in literature. 
Among these, probably the simplest reliable model is the Evolutionary Clough-Penzien model, 
successfully adopted for representing different kind of non-stationarities of recorded earthquakes (see 
e.g Yeh and Wen, 1991; Deodatis and Shinozuka, 1988; Deodatis, 1996). Alternative models based on 
more physical approach involving geophysical parameters such us that one proposed by Sabetta and 
Pugliese (1996) and by Pousse et al. (2006) can be also suitably used. The stationary spectrum 
compatible power spectral density function ( )SG  can be determined through various procedures 
generally based on the solution of the first crossing problem (Vanmarcke and Gasparini, 1977). 
Specifically, for a given damping ratio 0  and circular frequency 0 , the mean pseudo-acceleration 

response spectrum 0 0( , )RSA    under the hypothesis that mean and median can be considered 
coincident is given by the equation  
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where T  is the duration of the time observing window, assumed equal to the strong motion phase of 
the uniformly modulated ground motion process, 0.5p   is the not exceeding probability, U  is the 
peak factor of the response given by the following equation 
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Furthermore, ,i U  ( 0,1,2i  )  are the response spectral moments given by the following equation 
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
    is the energy transfer function and ( )SG   is the 

unilateral stationary power spectral density function of the ground acceleration process. The 
evaluation of the stationary power spectral density function ( )SG   can be pursued through different 
strategies. The recursive relationship proposed by Cacciola et al. (2004) will be adopted in the 
following to determine ( )SG  . That is  
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where 0( , )RSA    is the target pseudo-acceleration response spectrum for a given damping ratio 0  

and circular frequency  , 0( , , , )T p    is the peak factor given by the following equation 
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T  is the duration of the time observing window, assumed equal to the duration of the strong motion 
phase of the ground motion process and 0.5p   is the not-exceeding probability. In Eqn.2.7 

1 1 /rad s   is the lower frequency of the domain of existence of the peak factor defined in Eqn.2.7. 

Following the procedure proposed by Preumont (1985) the stationary counterpart of Eqn.2.1, ( )G    is 

determined by equating for each frequency the energy of the separable spectrum compatible model 
and that of the non-separable process defined in Eqn. 2.1. That is 
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The modulating function ( )t , among those proposed in literature, have to be selected and calibrated 
in such a way to exhibits a strong motion phase equal to the duration of the time observing window T. 
The model proposed by Jennings et al. (1969) will be used to this purpose, specifically  
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1t  and   being positive parameters. Once defined ( )SG   and ( )t  Eqn. 2.9 provides the direct 

relationship for determining ( )G  , that is 
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The simulation of fully non-stationary spectrum compatible earthquake can be then performed 
through the superposition of hN  harmonics with random phases (Shinozuka, and Deodatis 1988) 
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where ( )r
k  are independent random phases uniformly distributed in the interval [0,2 ] . Even if the 

spectrum compatible quasi-stationary model guarantees the matching within a certain tolerance of the 
simulated and target response spectra, depending by the kind of non-stationarity embedded in the term 

( , )A t , the difference between simulated and target response spectra could be relevant. In this 
regard, the matching can be achieved by adopting the following iterative scheme applied to the 
stationary component ( )G   
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where ( ) ( )jG  is the stationary power spectral density and 
( )

0( , )
j

RSA    the simulated mean 
response spectrum both determined at the j-th iteration. 
 
 
3. SIMULATION OF HIGH VARIABLE FULLY NON-STATIONARY RESPONSE-
SPECTRUM-COMPATIBLE ACCELEROGRAMS 

The procedure described in previous sections provides very accurate results for matching an 
individual target mean response spectrum. It could be applied for structural design according to 
current seismic regulation. Nevertheless, a thorough investigation of the results reveals the necessity 
to include in the simulation of artificial earthquakes the natural variability of relevant ground motion 
parameters (Pousse et al. 2006, Viallet et al. 2007, Cacciola and Zentner, 2012). To this aim the 
procedure propes by Cacciola and Zentner (2012) is herein extended to taking into account the 
correlation among the spectral acceleration values. Let consider the following random evolutionary 
spectrum  
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in which for fixed j , ( ) exp ( ) 1,...,j j j n        as a set of lognormal distributed random 
variable, ( ), 1,...,j j n  

 
being a set of correlated Gaussian random variables  possessing mean 

value ( )j    , standard deviations ( )j     and correlation ( ) ( )i j    . Also ( )j      
and ( )j     are the mean value and standard deviation of ( )j   respectively. The values of 

 ,  and ( ) ( )i j     can be determined by the meaning of the following relationship (Cacciola and 
Zentner, 2012)  
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where 0( , , )jRSA     is the response spectrum pertinent to the proposed evolutionary power 
spectrum given in Eqn. 2.1. Taking the mathematical expectation of Eqn. 3.2  
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and imposing the coincidence between the target response spectrum 0( , )jRSA    and the mean value 

0( , , )jE RSA       it follows that 
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Since also the following relationship holds 
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it follows that 
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The value of the standard deviation ( )j     can been determined (Cacciola and Zentner, 2012) 

using a target mean+standard deviation response spectrum, 0( , )jRSA    , that is  
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Since the following relationship holds 
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therefore, taking into account Eqn. 3.6 it follows that 
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Since the correlation of spectral accelerations ln ( ) ln ( )i jRSA RSA   is generally defined through empirical 

relationships based on log-response spectra (see e.g. Inoue and Cornell 1990, Baker and Jayaram 
2008,), taking the logarithm of Eqn. 3.2, it reads 
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After simple algebra, the correlation coefficients ( ) ( )i j     can be shown to be coincident with the 

selected correlation of spectral accelerations ln ( ) ln ( )i jRSA RSA  , that is 
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Moreover, the simulation formula given in Eqn. 2.12 is modified as follows  
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the value of the to the stationary component ( )G   is updated through Eqn. 2.13, while  the standard 

deviation ( )   is updated through the following iterative scheme 
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where ( ) ( )j
  is the standard deviation  and 
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 is the simulated mean+standard 
deviation  response spectrum both determined at the j-th iteration.   

 
4. NUMERICAL RESULTS  
In this section the proposed method for generating fully nonstationary spectrum compatible 
earthquakes is applied to the target response spectrum defined in Eurocode 8. Specifically, for a 5% 
damping ratio the response spectrum is given by the equations  
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The parameters defined for ground Type A have been used for the applications. Namely, 1S  , 
0.1BT s , 0.4CT s  and 3.0DT s ; furthermore, the maximum ground acceleration ga it has been 

set equal to 21 /m s . According to Eurocode 8, consistency is considered to be achieved if the 
condition  
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is satisfied over the range of periods between 10.2T  to 12T ; 1T  being the fundamental period of the 
structure under study in the direction where the accelerogram is applied;  and if 

  0 gRSA a S ,      (4.3) 

  RSA T  being the mean response spectrum from at least three simulated earthquakes. To illustrative 

purpose the variability of the response spectrum has been set as 

 ( ) 1.5 ( )RSA T RSA T                                                                         (4.4) 

Therefore  
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The correlation of spectral accelerations ln ( ) ln ( )i jRSA RSA   proposed by Inoue and Cornell (1990) has 

been also selected, that is 
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In order to apply the proposed procedure the evolutionary Clough-Penzien model has been selected  
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in which it has been assumed for illustrative purpose 

  0.0625 0.15( ) 3 19.01 t t
g t e e                        (4.8) 

proposed by Ahmadi and Fan (1990), for representing the non-stationary features of the El Centro 
earthquake, and ( ) 0.1 ( )f gt t  , 0.6g f   . Therefore, the parameters 1 2.2064a    

2 1.85a  3 0.13a  4 1.58a   have been used.  

 

 
 
 
 
 
 
 
 
 
 
Figure 1. Comparison between simulated and target response spectra: a) ( ) 1j   , b) ( )j   uncorrelated; c) 

( )j  correlated. 

 
The proposed procedure has been then applied for simulating artificial accelerograms compatible with 
mean and mean  standard deviation response spectra and compared with the procedure proposed by 
Cacciola and Zentner (2012), considering either ( ) 1j   , i.e. no imposed variability, ( )j   

lognormal uncorrelated random variables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Trajectories of simulated ground motion accelerograms: a) ( ) 1j   , b) ( )j   uncorrelated; c) 

( )j  correlated. 
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The accuracy of the proposed procedure is manifested in Figure 1 by the positive matching between 
simulated and target response spectra. Interestingly, it can be noted in all the case considered the mean 
target response spectra in perfectly matched, so to satisfy the response-spectrum compatibility criteria 
imposed by the seismic Eurocodes. Fig. 1b and 1c show that also the imposed target mean+standard 
deviation response spectra is matched confirming the accuracy of the convergence criteria defined by 
Eqn. 2.13. Pertinent trajectories are reported in Fig. 2. It can be seen as the case in which ( ) 1j    

the accelerograms are very similar, while by considering a random evolutionary spectrum it can be 
observed not only large variability in the peak values, but also in the frequency content.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Correlations of the log-response spectral acceleration values: a)  Inoue and Cornell (1990)  target 
correlation; b) ( ) 1j   , c) ( )j   uncorrelated; d) ( )j  correlated. 

 
Lastly correlations of the log-response spectral acceleration values are compared. Fig. 3a shows the 
target one defined in Eqn. 4.6. Figure 3b, 3c, and 3d shows the correlation coefficient in the case of 

( ) 1j   , ( )j   uncorrelated and correlated respectively. 

 
4. CONCLUDING REMARKS 
The modelling of seismic load is a major topic still open in the scientific community. The sustained 
dissemination of database of recorded accelerograms along with the increasing number of strong-
motion networks installed worldwide provide valuable information to calibrate and eventually modify 
theoretical models up to now used to simulate artificial accelerograms. The main drawback of most of 
the available procedure is that the simulated accelerograms do not manifest the observed natural 
variability of the recorded ones. As a consequence, the resulting structural response analysis can be 
misleading. In this paper a procedure for simulating fully non-stationary response-spectrum-
compatible accelerograms has been proposed. The procedure is aimed at reproduce features observed 
by the analysis of database of recorded earthquakes. Specifically the procedure is able to reproduce the 
variability of the acceleration response spectra along with a prescribed correlation of spectral 
acceleration values. The procedure is versititle and various seismological models can be embedded. As 
shown in the numerical applications. 
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