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SUMMARY: 

A univariate model of phase spectrum, built up on a time argument associated with the concept of starting-time 

of phase evolution of frequency components, is proposed in the present paper whereby a family of simulation 

methods for nonstationary earthquake ground motions is developed. This phase model allows a feasible phase 

spectrum just using few variables of the starting-time in numerical implementation. In order to reduce the com-

putational effort of the starting-time, a wave-group propagation formulation is also introduced. An observed 

ground motion at the type-II site, i.e. Northridge waves, is investigated for illustrative purposes. Numerical re-

sults prove the validity and applicability of the simulation scheme. This methodology provides a new perspec-

tive towards the representation of nonstationary stochastic ground motions. 
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1.  INTRODUCTION 

 

The dimension reduction, both with the phenomenal models (site-based models) and physical models 

(source-based models), has been a challenging issue for the accurately modeling of nonstationary earth-

quake ground motions (Li and An, 2008). It results in the complication of numerical implementation re-

garding to highly-dimensional probabilistic space constructed by the parametric variables of stochastic 

ground motions. In a filtered Gaussian white-noise model, for example, there is a few of parameters 

need to be identified (Rezaeian and Der Kiureghian, 2008). While in the spectral representation model, 

it becomes difficult to rationally identify the phase spectrum and the associated physical quantities using 

only few variables. Traditionally, the phase spectrum or phase-difference spectrum is assumed to admit 

a probabilistic distribution, e.g. Uniform distribution(Shinozuka and Jan, 1972), Normal distribution 

(Ohsaki, 1979), Lognormal distribution (Zhu and Feng, 1992)and Beta distribution (Thrainsson and 

Kiremidjian, 2002). The phase spectrum is then built up using the method of randomly sampling. Re-

cently, a polynomial fitting technique was employed to construct the accumulated phase spectrum 

whereby the phase spectrum was obtained (Shrikhande and Gupta, 2010). A numerical challenge, how-

ever, gives rise in the spectral representation model that tens even hundreds of variables are required 

towards achieving the desirable simulation results, which withdraws practical applications of the model.  

 

Having this knowledge, we are in attempt to develop a family of simulation methods for ground motions 

employing a univariate phase model built up on a time argument associated with the concept of starting-

time of phase evolution of frequency components. This treatment allows a feasible phase spectrum for 

the practical application just using few variables in numerical implementation. It bypasses the numerical 

challenge inherent in the classical spectral representation techniques. The sections arranged in this paper 

are distributed as follows. Section 2 is dedicated to illustrating the concept of starting-time of phase 

evolution. In order to reduce the computational effort of the starting-time for a complicated nonstation-

ary ground motion process, Section 3 introduces the group propagation of earthquake waves of which 

the frequency components with significant contribution to ground motions are included. An observed 



ground motion is investigated in Section 4 for illustrative purposes. The concluding remarks are includ-

ed in the final section. 

 

 

2. STARTING-TIME OF PHASE EVOLUTION 

 

2.1 Velocity of phase evolution 

 

We consider a nonstationary earthquake ground motion ( )ta  in a finite time domain [0  T], of which 

the Fourier transform is given by 
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where  denotes the circular frequency; ( )A  denotes the Fourier spectrum in unilateral form, 

and  operates the magnitude of Fourier spectrum; ( )   denotes the principal value of Fourier phase 

spectrum, ( ) [0,2 )   ; i is the unit of imaginary number 1 . 

 

In physics, the earthquake-induced vibration of a spatial point could be viewed as the integration of a 

series of harmonic waves with different scales in frequency components. The energy carried by the 

seismic ground acceleration can be expressed as its time-average variance
2 : 
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where ( )sa  denotes the acceleration of harmonic waves. The representative acceleration and velocity of 

harmonic waves are thus given as follows (Hinze, 1975): 
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The phase change of a harmonic wave in time interval t  is typically a function of its velocity, which 

could be represented by 
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where ( )sl   denotes the wave length; ( )sk   denotes the wave number which is reciprocal to the 

wave length, and has the relationship with frequency as follows: 
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where sev is the equivalent shear-wave velocity of earthquake ground motions in an extensive site. It re-

lies upon the type of site soil. As regards type-II site, for example, 1500sev   m/sec (Dziewonski and 

Anderson, 1981). 

 

Equation (5) indicates the velocity of phase evolution with different frequency components: 
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It is seen that the velocity of phase evolution is of time-independence. 

 

2.2 Identification of starting-time of phase evolution 

 

As indicated in equation (7), the phase velocity is the function in frequency components which varies 

with the frequency due to different frequency components endowed different values of Fourier ampli-

tude. One might image that there is always a zero time where all the phases of frequency components 

are zero if the ground motion is evolved backward from the time of wave observation at the station to-

wards the epicenter. A schematic diagram picturing the generator and observers of ground motions, as 

shown in Figure 1, is presented for illustrative purposes. The epicenter with depth 
0h , labeled ’o’, is 

the generator of ground motions (a hypothesis of point source on earthquakes is used in the investigated 

univariate phase model towards expediently simulating the observed earthquake ground motions though 

they might not admit this hypothesis). The station A with distance d from the epicenter, labeled ’o1’, is 

one of the observers of ground motions, and ( )ta  denotes the observed ground motion. The ground 

motion ( )ta is artificially evolved backward to the zero-phase point labeled ’o2’ where, as mentioned 

previously, all the phases of frequency components of the ground motion are zero. For notation conven-

ience, we define the time of wave observed at Station A as the current time, and define the time of wave 

reaching at the zero-phase point as the zero time. The time interval between the current time and the ze-

ro time is defined as the starting-time, which is labelled sT as indicated in Figure 1. 

 

Figure 1. Schematic diagram for definition of starting-time of phase evolution. 

 

Figure 2. Schematic diagram for identification of starting-time of phase evolution. 
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The starting-time of phase evolution is actually an imaginary physical quantity with abstract meaning. It 

was indicated in the research of physical mechanism of earthquake ground motions that once the earth-

quake happens the phases of frequency components of ground motion generated from the earthquake are 

not all zero. The primary factors, however, that effect the phase of frequency at the current time are 

propagation distance and velocity of ground motions. It is understood that the propagation velocity of 

frequency components governs their phase evolutions, and the differences resulted from initial phases of 

frequency components can be ignored in case that the propagation distance of ground motions is long 

adequately. Without risk of confusion, we thus assume that the frequency components of earthquake 

waves exhibit the same initial phase with zero values at the instant of earthquake occurring, at least for 

the frequency components in a specific wave group that is to be mentioned in the next section. Having 

this knowledge, one comes to realize that if the initial zero-value phase hinges on wave groups, the epi-

center ’o’, as shown in Figure 1, and the zero-phase point ’o2’ are typically not identical in mathemati-

cal logic. Since the starting-time of phase evolution is an imaginary physical quantity, the zero-phase 

point denotes a spatial point with imaginary physical sense. 

 

Figure 2 shows the phase evolutions of any three frequency components, labelled
1i 
, i , 

1i 
, re-

spectively, from the zero-phase point at the zero time. In the figure, longitudinal coordinate indicates the 

principal value of phases. For illustrative conveniences, the velocities of phase evolution of these fre-

quency components are assumed to have the following relative magnitudes:j(w
i+1

) <j(w
i
) <j(w

i-1
); 

see the slopes at zero time in Figure 2. These frequency phases evolve forward from the initial zero 

phases at zero time, and would reach at 2  at in different time sequences due to their different veloci-

ties of phase evolution. It is seen from Figure 2 that the frequency component 1i  with relatively larger 

evolution velocity of the three frequencies will first arrive at 2 . The component, however, does not 

hold the largest primary phase in the following any instants since the frequency phase are of comple-

mentation with 2  when they reach at 2  for the consideration of primary values of phase. We 

might assume, at the current time labelled 0t , the primary phases of the these frequency components 

exhibiting the following relative magnitudes: 1 0 1 0 0( , ) ( , ) ( , )i i it t t        ; see the slopes at cur-

rent time in Figure 2. Continuing the evolution forward, one can see that the time cost of the three fre-

quency components reaching to their nearest 2 , labelled 1iT  , iT , 1iT  , respectively, has the follow-

ing relative magnitudes: 1 1i i iT T T   . An equation set, including propagation parameters and 

starting-time of phase evolution of a collection of frequency components ( 1,2, , )i i n  , can be con-

structed of which the representative equation is shown as follows: 
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where sT  denotes the starting-time of phase evolution; ( 1,2, , )iN i n denotes the time crossing 

over 2  in the process of phase evolution of frequency components. 

 

It is extreme difficult to derive the analytical solution of the starting-time. Numerical procedure is a 

practical choice that a simple scheme is proposed here: enumerate 1 1( 1,2, ,1000000)N N  , and fix 

a 1N  according to the representative equation (8) by satisfying a loose condition, 

i.e.{ [ ]} ( 2,3, , )i iN N i n   , then iN can be solved using the following equation: 
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With the solution of any ( 1,2, , )iN i n , the starting-time 
sT  can be deduced according to equation 

(8). Using 
1N , for example, the expression of 

sT  is given by 
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3. GROUP PROPAGATION OF EARTHQUAKE WAVES 

 

In the investigation of observed earthquake ground motions, we found that it is still difficult to fix a 

standard starting-time for all frequency components (there are hundreds of frequency components for a 

typical observed ground motion), even if the numerical procedure including loose condition is used.  

 

A ground motion process, nevertheless, can be viewed as the composition of a series of narrowband 

waves with predominant frequency components. These narrowband waves derive from the superimpos-

ing of harmonic processes. Introducing the propagation theory of wave group, moreover, the amount of 

frequency components used in fixing the starting-time can be reduced significantly. There generally di-

vide into three groups according to the Fourier amplitude spectrum of a typical ground motion, i.e. the 

group with low frequencies, the group with medium frequencies and the group with high frequencies 

which are labelled ‘wavegroup A’, ‘wavegroup B’, ‘wavegroup C’, respectively, as shown in Figure 3. 

In the figure, i , j , k  respectively represent a frequency component of the three groups. For each 

wave group, meanwhile, includes a series of narrowbands, one of which represented by j  is shadow 

area in Figure 3. j  denotes the width of the narrowband which is, in this paper, defined as times of 

interval of adjacent frequency components  , i.e. j n   . Besides, the width of narrowbands 

in different wave group generally varies. 

 

Figure 3. Schematic diagram of wave groups in accordance with Fourier amplitude spectrum. 

 

It is also indicated in Figure 3 that for an observed earthquake ground motion, one could fix just one 

starting-time of phase evolution for all wave groups, or fix individual starting-time for different wave 

groups. The latter has more lively physical scenarios associated with earthquakes. The frequency com-

ponents in one wave group thus have the same initial zero-value phase, while those in different wave 

groups have different initial zero-value phase, as indicated in the previous section. This hypothesis with 

loose conditions, in fact, is in accordance with the physical origin of earthquake ground motions. 

 

As indicated previously, the integration of harmonic waves in narrowbands underlies the group propa-

gation of earthquake waves. Taking the narrowband represented by j  in Figure 3 as an example, we 

further illustrate the principle of the superimposing which has the formulation as follows: 
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where u denotes the narrowband wave; Re{} operates the real part of a complex; ( )jU   denotes 

the Fourier amplitude value at frequency 
j ; 

ct indicates a calibration time of group propagation, 

which will be addressed in the following sections. Fourier phase spectrum ( )   is expanded in its 

first-order Taylor series: 
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where ( )j  denotes the Fourier phase value at frequency j . 

 

Substituting equation (12) into equation (11), we have 
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Integral over the range of  , we then have 
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Assigning A and B as the following expressions, respectively 
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then the narrowband wave u  is re-written into 
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Introduction of rules in trigonometric functions, u  is deduced as 

 

( ) sin
2Re [cos isin ]

j jU B
u A A

B

  
  

                        
     (18) 

 

namely, 
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4. CASE STUDIES 
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 (a)                                          (b) 

 Figure 4. Behaviors of Northridge earthquake ground motion: (a) representative time history and (b) Fou-

rier spectrum. 

 
An observed earthquake ground motions at type-II site is investigated for illustrative purposes: 

Northridge earthquake wave (scaled peak acceleration 100 gal, time interval 20.48 sec, sampling fre-

quency 50 Hz, the distance between station and epicenter 36 km). The example ground motion and its 

Fourier spectra are shown in Figure 4. The numerical procedure on simulating earthquake ground mo-

tions is completely detailed in the following subsections. 

 

4.1 Definition of parameters in loose conditions 

 

As mentioned in Section 2, the parameter  in loose condition is the coresidual of ( 1,2, , )iN i n  

to 1, and it should be a value with magnitude far less than 1. The loose condition would result in a dif-

ference between original frequency phases and simulated frequency phases. In order to measure the ef-

fect acted by this difference on the simulated wave, an analysis step of phase sensitivity to the simulated 

wave needs to be carried out first. We investigate the 
2L error norm between original ground motion 

and simulated ground motion in case that the phase values of all frequency components are added 4 , 

8 , 16 , 32 , respectively. It is indicated that the group with low frequencies significantly con-

tributes to the simulated result than the group with high frequencies, and specifically, nearly all the fre-

quency components have trivial effect on the simulated result in case that the phase increasement of fre-

quency components is less than 16 . The parameter  thus can be defined as follows: 
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where ˆ( )i  denotes the simulated phase spectrum. 

 

It is also indicated from Figures 4(b) that the low frequency group exhibiting significant contribution to 

the simulated wave corresponds to larger magnitudes of Fourier amplitude spectrum. One might realize 

that the simulated result is sensitive to the frequency components carrying most energy. It is further un-

derstood that the medium and low frequency components including the most energy are related to the 

conventional engineering structures of which the fundamental period ranges from 0.1 to 10.0 sec, the 

high frequency components, therefore, occupying tiny energy can be dropped. Have this in mind, we just 

use, for the case of Northridge wave, the frequency components with number 1 to 200 in the following 
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simulation corresponding to frequency range [0.0 61.0] rad/sec. This treatment further reduced the 

complex degree of the investigated case. 

 

4.2 Starting-time of phase evolution of predominant frequencies 

 

It is indicated from the above sections that using the principle of wave group, just the predominant fre-

quency components and their adjacent components are critical in the numerical procedure. The deduced 

starting-times are used to simulate the phases of predominant components and their adjacent compo-

nents in one wave group. The phase of adjacent components is required in estimating the gradient of 

phase spectrum at frequency
j ; see d d   in equation (12). 

 

According to the sensitive behavior of phases to frequency components, the frequency domain of interest 

is divided into three groups: low frequency group with range [0.0 8.9] rad/sec, medium frequency group 

with range [9.0 30.4] rad/sec, high frequency group with range [30.5 61.0] rad/sec. Further, 5 predomi-

nant frequency components are uniformly selected in each group, respectively, whereby a series of nar-

rowbands in these predominant components are calculated, and then the ground motion is formed. The 

predominant frequency components and their crossing times N over 2 , starting-time of wave group 

sT , parameter of loose condition are showed in Table 1. 

 

It is seen from Table 1 that for the investigated ground motion, 3 wave groups respectively correspond-

ing to low frequencies, medium frequencies and high frequencies, 15 narrowbands and 6 starting-times 

of phase evolution are sufficient to perform the simulation. In the 6 starting-times, 3 ones are used to 

represent the phase evolution of predominant components, and 3 ones are used to represent the phase 

evolution of adjacent components. Here, the latter 3 starting-times are independent to the former 3 start-

ing-times though the corresponding frequency components are belonged to the same wave group, respec-

tively. The predominant frequencies governing the wave-group propagation are those relevant to the 

former 3 starting-times. The latter 3 starting-times are just used to estimate the gradient of phase spec-

trum at frequency j . 

 
Table 1. Starting-time of phase evolution of wave groups for Northridge ground motion. 

Group 
Freq. 

(rad/s) 

Predominant components Adjacent components 

No. N 
Ts 

(sec) 
ε No. N 

Ts 

(sec) 
ε 

1 0.0~8.9 

4 63227 

1.83634E11
 

0.00 

5 12907 

5.42631E9
 

0.00 

10 6822540 11 59235 

16 5902030 17 220095 

22 1952360 23 536106 

28 26008200 29 1184610 

2 9.0~30.4 

38 14810 

4.99651E7
 

0.02 

39 16160 

3.57748E7
 

0.03 

52 21531 53 9788 

66 47768 67 31185 

80 8041 81 9657 

94 8861 95 4049 

3 30.5~61.0 

111 101036 

5.56573E8
 

0.00 

112 86929 

4.90935E8
 

0.00 

131 247391 132 230361 

151 233090 152 118969 

171 226809 172 170529 

191 242702 192 207004 

 



It is indicated that the phase values of simulated predominant and adjacent components match well to 

those of observed predominant and adjacent components since the difference between them is less than 

16 in case of the loose condition mod( ,1) ( 1,2,3, , )iN i n  . The parameter of loose condi-

tion , in this case, nearly equals zero for the wave groups of interest, of which the maximum value is 

0.03. The simulated and observed predominant and adjacent components are shown in a Fourier rose-

diagram, as shown in Figure 5, where the polar radius denotes the Fourier amplitudes and the polar an-

gle denotes the phases of investigated components. In the diagram, the circle ‘o’ indicates the simulated 

frequency components, while the dot ‘.’ indicates the observed frequency components. It is revealed that 

the starting-time of phase evolution is effective to represent the phase spectrum in predominant frequen-

cies whereby a univariate phase model can be achieved. 

 
Figure 5. Rose diagram for Fourier spectrum of predominant frequencies. 

 

It is also indicated in Table 1 that the crossing times N  of predominant components over 2  are 

significantly different even if these frequencies are located in one wave group, which results in distinct 

starting-times of phase evolution for wave groups. It is explained that the above results are due to the 

differences between phase values and phase evolution velocities of predominant components at the cur-

rent time 0t . As indicated previously, the starting-time of phase evolution is a nominate physical quan-

tity introduced for simulating phase spectrum which lacks physical accounts. 

 

4.3 Simulation of earthquake ground motions 
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Figure 6. Comparison between simulated and observed Northridge ground motions. 

 
Using the phase spectrum in predominant frequencies, the simulation of earthquake ground motion is 

performed where the amplitude spectrum is, for validating purpose of the univariate phase model, in ac-

cordance with the Fourier amplitudes of observed ground motion. The comparison between the time his-

  0.02

  0.04

  0.06

  0.08

30

210

60

240

90

270

120

300

150

330

180 0



tory of the simulated and observed ground motions is shown in Figure 6 (in simulated case: 280ct   

st, where st is a time unit that equals to 0.02 sec). It is seen that the simulated ground motion arises to 

be sound. Therefore, the simulation of Northridge ground motion is reliable using 6 starting-times of 

phase evolution to construct 15 narrowbands with superimposing of harmonic processes. 
 

In the previous numerical investigations, the amplitude values in equation (11) employs those of Fourier 

amplitudes of observed ground motions for validating purpose of the univariate phase model. The am-

plitude values actually can be rendered using a classical envelope function consisting of build-up, con-

stant and decay portions (Ohsaki, 1979). For the simulation of nonstationary stochastic ground motions, 

the parameters in the envelope function and univariate phase model can be readily identified and synthe-

sized through investigation of recorded ground motions at a certain site. The univariate phase model 

built on the proposed starting-time of phase evolution thus promotes a more feasible scheme for the rep-

resentation of nonstationary stochastic ground motions. 

 

 

5. CONCLUDING REMARKS 

 

A new family of simulation methods for nonstationary earthquake ground motions is developed in the 

present paper which employs a univariate phase model built up on a time argument associated with the 

concept of starting-time of phase evolution of frequency components. Numerical investigations indicate 

that the proposed starting-time of phase evolution is a very useful concept which provides an efficient 

component to simulate ground motions just using few variables in numerical implementation. This 

treatment bypasses the numerical challenge inherent in the classical spectral representation techniques 

that tens even hundreds of variables are required in modeling the phase spectrum. It also promotes a 

more feasible scheme for the representation of nonstationary stochastic ground motions. 
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