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SUMMARY: 
An integrated design scheme for simultaneous optimization of damper placement and parameters of passively 
controlled structures is proposed in the present paper. A sequential procedure with probabilistic criteria of a min-
imum storey controllability index gradient and an optimum energy trade-off, both in function of exceedance 
probability of structural response and control action, is defined to efficiently schedule the optimal topology and 
optimal parameters of dampers. The resolution procedure of the integrated scheme is detailed, and a numerical 
example is investigated involving a randomly base-excited ten-storey shear frame equipped with viscoelastic 
dampers. Numerical results reveal that the proposed integrated scheme can gain the maximum control effective-
ness with the minimum control cost. The controlled system response is significantly reduced and becomes 
smoother along the height of the structure, which results in a more desirable structural performance. Using the 
design criterion, meanwhile, of the minimum storey controllability index gradient, the structural stochastic opti-
mal control achieves the objective performance more efficiently than that of the maximum storey controllability 
index currently in use. 
 
Keywords: Damper placement; parameter optimization; storey controllability index gradient; energy trade-off; 
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1. INTRODUCTIONS 
 
In recent years, structural control has demonstrated its value for mitigating natural hazards and en-
hancing the safety and serviceability of structural systems (Housner et al, 1997). It includes, typically, 
four kinds of control modalities, i.e. passive control, active control, semi-active control and hybrid 
control. Passively controlled modality is widely used in the engineering application due to its feasible 
and stable behavior upon structural systems compared to other three controlled modalities. The pas-
sively controlled modality, generally, operates through attaching isolation devices or energy-
dissipation components to the structure towards strengthening structural damping, structural stiffness 
and structural intensity. The control effort provided by this modality just relies upon the response of 
structures subjected to the external dynamic loading, rather than rely upon the power as required in 
other three controlled modalities. The efficiency and sustainability of the passively controlled modali-
ty have been verified by its applications to the control of engineering structures since 1990s. Devel-
opment of the energy-dissipation components, up to date, is still one of the challenging issues in the 
field of structural control (Gajan & Saravanathiiban, 2011). 
 
Control algorithms relevant to the passive control are mainly involved in the optimization of parame-
ters and placement of passive energy-dissipation devices. Criteria for optimizing controller parameters 
have been proposed that include the minimization of structural displacements using the capacity spec-
trum method (Kim et al, 2003), the minimization of cost over the life-cycle of structures using the ge-
netic algorithm (Park et al, 2004). While criteria for optimizing control placement include minimiza-
tion of a modal control index (Chang and Soong, 1980), minimization of an energy control index 



(Chen et al, 1991). Pioneering work has also contributed to the controller placement in connection 
with multistory buildings using the concept of degree of controllability (Laskin, 1982). Although a lot 
of investigations were devoted to the optimization of parameters and placement of passive energy-
dissipation devices, the uncertainties existing about the dynamics of the structural control system or its 
operational environment has not been received sufficient attention. One might not ensure the structural 
safety using control devices with deterministic control policies. Recently, a physical approach to struc-
tural stochastic optimal controls on the basis of the generalized density evolution equation has been 
proposed, which is applicable to practical random excitations, such as earthquake ground motions, 
strong winds and sea waves (Li et al, 2010). This approach allows a complete probabilistic design of 
controller parameters and placement towards structural performance, as gaged by probability density 
function of system responses of controlled structures. 
 
In the present paper, an integrated scheme with routine of two-step optimization is proposed that 
serves to schedule the optimal topology and optimal parameters of viscous dampers mounted on pas-
sively controlled structures. Performance function in function of exceedance probability of structural 
response and control action is defined as the kernel of probabilistic criteria of the two-step optimiza-
tion. A control criterion with minimum storey controllability index gradient is proposed to efficiently 
search for the optimal topology of viscous dampers. For illustrative purposes, a ten-storey shear frame 
structure controlled by viscous dampers is investigated. The concluding remarks are included in the fi-
nal section. 
 
 
2. INTEGRATED SCHEME FOR DAMPER DESIGN 
 
Consider an n-degree-of-freedom linearly damped structural system subjected to a finite mean-square 
random excitation and governed by the following equation of motion: 
 

MX(t)+CX(t)+KX(t) = BsU(t)+DsF(ϖ, t)                        (1) 
 
where T

1( ) { ( )}ni it X t ==X refers to an n–dimensional vector, ( )iX t is the inter-story drift between stories i 
and (i-1); T

1() { ()}pi iF =⋅ = ⋅F represents a p–dimensional random excitation vector, in which ϖ  repre-
sents a point in the set of basic random events charactering the external excitation. M , C  and K are 
( )n n× mass, damping and stiffness matrices, respectively; 

sD is a ( )n p× matrix denoting the location 
of excitations; 

sB is a ( )n r× matrix denoting the location of viscous dampers; T
1( ) { ( )}ri it U t ==U denotes 

an r-dimensional control force vector relevant to viscous dampers.  
 
The control force is a nonlinear mapping from the state vector involving the inter-story drift, inter-
story velocity and storey acceleration to control force vector using any number of technologies and 
control logic. As a specific case that the control action linear relies on the state, the control force has 
the following general expression: 
 

T( , ) ( , , )[ ( , ) ( , ) ( , )]t t t t=U f M C K X X XΘ Θ Θ Θ                      (2) 

 
where f(M,C, K)is the matrix function of the optimal control policy; M , C and Kare the general-
ized mass, generalized damping, and generalized stiffness, respectively, associated with the control ac-
tion; ( )ϖ=Θ Θ  is a random vector defined on the set of basic events with the joint PDF ( )pΘ θ . The 
vector of random parameters models the basic uncertainty in the systems and is used to implicitly pa-
rameterize the state and control force vectors. 
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Figure 1. Two-step optimization routine included in stochastic passively controlled modality. 
 
An unified scheme for the optimal control policy can be developed by introducing a matrix function 

* *( , )f I L  describing the dependence of the linear system dynamics on system parameters and control 
layout. The control force provided by viscous dampers is obtained as matrix ( )⋅f  operates on the state 
vector, as indicated in equation (2). Here, * * * *[ , , ]I I I= M C KI is the optimal parameter vector denoting the 
generalized mass, generalized damping and generalized stiffness; * * * *[ , , ]x y zL L L=L is optimal topology 

matrix denoting the dampers distributed in structural space with respect to dimensions x, y and z. The 
lattices enclosed by beams and columns, especially for a frame, are set as the elements. In the topology 
matrix, zero denotes no dampers in the lattice, and the non-zero indicates a reference number of damp-
er in the lattice and the sequence of placement of the damper. It is noted that the matrix function 
()⋅f is a deterministic functional matrix even when used in conjunction with stochastic system control. 

Its solution can be gained with benefit of the following two-step optimization routine; see Figure 1. 
The probabilistic criteria, i.e. Optimum energy trade-off criterion and Minimum storey controllability 
index gradient criterion, involved in the routine would be detailed in the next section. 
 
 
3. PROBABILISTIC CRITERIA OF INTEGRATED SCHEME 
 
3.1 Criterion of optimal damper placement  
 
In order to identify the optimal topology matrix, a controllability index related to the exceedance 
probability of quantities of interest is defined as 
 

T T
, , , ,

1[Pr ( )Pr ( ) Pr ( )Pr ( )]
2 i i i ii i i thd i i thd i i thd i i thdZ Z U UZ Z Z Z U U U Uρ = − > − > + − > − >0 0 0 0 , 1,2, ,i n=             (3) 

 
where T[max ( , ) max ( , ) max ( , ) ]i i i it t t

Z X t X t X t= Θ Θ Θ , = max ( , )i it
U U tΘ are the extreme state and control 

force vectors of the ith element in the interval
0[ , ]ft t , respectively, and where Pr()⋅  operates compo-

nentwise on its vector argument; 
, ,,i thd i thdZ U are the threshold vectors corresponding to ,i iZ U . 

 
Equation (3) indicates that the exceedance probability based controllability index characterizes system 
safety (the controlled inter-story drift), system serviceability (the controlled inter-story velocity), sys-
tem comfortability (the controlled storey acceleration), controller workability (the constrained control 
force) and their trade-off, which is more comprehensive than the controllability index of single con-
trolled quantity (Zhang and Soong, 1992). 
 
Moreover, a controllability index gradient is defined as 
 

1

1

j j
j i i
i j

i

ρ ρ
ρ

ρ

−

−

−
Δ = , 1,2, , ;   1,2, ,i n j r= =

                      
   (4) 



 
where 0

iρ represents the controllability index of the uncontrolled structure. It is noted that the structur-
al topology is always updated with the newly added proper damper j by introducing the criterion of 
minimum storey controllability index gradient (MinSCIG). The optimal topology design of each se-
quence involves the following optimization problem: 
 

* * *

, ,
( , , ) argmin{ ( , , )}j

i i i i
x y z

x y z x y zρ= Δ , 1,2, , ;  1,2, ,i n j r= =
                  

   (5) 

 
Therefore, the next damper will be placed at

opti , of which j
iρΔ possesses the minimum of the gradient 

vector
1 2( , , , )j j j

nρ ρ ρΔ Δ Δ , and the corresponding location vector (x*, y*, z*) is ready to prompt an update 
structural topology until the predetermined objective performance is achieved. The optimal location of 
the first damper is fixed according to the maximum of argument 0

iρ  since no controllability index 
gradient is at current state. It is worth noting that the design criterion for the optimal location of the 
next damper, referred to as the principle of maximum storey controllability index (MaxSCI) (Zhang 
and Soong, 1992), achieves the objective performance more slowly than that of the minimum storey 
controllability index gradient, which will be illustrated in details in the following numerical example.  
 
3.2 Criterion of optimal damper parameters 
 
As was noted previously, the optimal damper placement relies upon the controllability index gradient. 
The optimal parameters of dampers, however, must resort to another optimization program. Therefore, 
a performance function with energy trade-off can be constructed in the exceedance probability of 
quantities of interest, namely, 
 

T T1( , ) [Pr ( )Pr ( ) Pr ( )Pr ( )]
2 thd thd thd thdZ Z U UJ ZU Z Z Z Z U U U U= − > − > + − > − >0 0 0 0                    (6) 

 
where T[max(max ( , )) max(max ( , )) max(max ( , ))]i i it i t i t i

Z X t X t X t= Θ Θ Θ , = max(max ( , ))it i
U U tΘ  are equivalent extreme-

value vectors of the state and control force in the interval
0[  ]ft t , respectively; ,thd thdZ U are the threshold 

vectors corresponding to ,Z U . It is clear that the performance function with energy trade-off has the 
same physical meaning as the controllability index. 
 
The optimal parameters of dampers, thereby, are obtained by minimizing the performance function 
with energy trade-off, and the damper configuration is determined as the criterion of the MinSCIG at 
each stage. It is noted that the exceedance probability included in the controllability index and perfor-
mance function can be readily solved, since the state vector 

iZ and the control force vector iU are gov-
erned by the generalized density evolution equations (GDEEs) (Li et al, 2010). 
 
 
4. RESOLUTION PROCEDURE FOR INTEGRATED SCHEME 
 
The resolution procedure of the functional matrix of generalized optimal control policy * *( , )f I L in-
volves optimization programs, including the sequential procedure to identify the optimal damper 
placement and the performance function minimized to lay down the optimal parameters of dampers. 
The following steps thus are used: 
 
Step 1: Computation of controllability index of uncontrolled system. The numerical procedure in-
volves: (i) Probability-assigned space partition to determine the representative point set 

1, 2, ,{ = ( , , , ) 1,2, , }res q q q s q resq nθ θ θ =θσ and the corresponding assigned probabilities
qP  (Li and Chen, 2007). (ii) 

Deterministic dynamic simulation of the controlled system at the representative points to obtain the 



state ( , )qZ tθ  and its derivative process ( , )qZ tθ , the control force ( , )qU tθ  and its derivative pro-

cess ( , )qU tθ . (iii) Using the finite difference method to solve the GDEEs and get the numerical solu-

tions of ( , , ), ( , , )Z q U qp z t p u tΘ Θθ θ , where the modified Lax-Wendroff difference scheme with TVD nature 

is usually preferred (Li and Chen, 2004). (iv) Repeating (ii) and (iii), running over 
sel1,2, ,q n= , and 

summing the results to obtain the desirable probability density by 
 

1

( , ) ( , , )
resn

Z Z q q
q

p z t p z t S
=

=∑ Θ θ , and  
1

( , ) ( , , )
resn

U U q q
q

p u t p u t S
=

=∑ Θ θ                      (7) 

 
where 

qS is the area measure of representative sub-domains, which is related with the partition strate-

gy of probability-assigned space. (v) Computing the controllability index (gradient) by equations (3) 
and (4). 
 
Step 2: Adding a new optimal damper. (i) Deploying the damper as the criterion of maximum (mini-
mum) controllability index (gradient). (ii) Initial values chosen of optimized parameters based on their 
physical contexts, to the passively controlled system, for example, optimized parameters ,d dC K . (iii) 
Seeking for the optimal parameters by minimizing the performance function, which involves an itera-
tive process of performing (ii) (iii) (iv) of Step 1. 
 
Step 3: Computation of controllability index of controlled system. Running (ii) (iii) (iv) (v) of Step 1 
for the controlled system with the newly added damper, the optimal location of the next damper is de-
termined. 
 
Steps 2 and 3 are repeated until the objective performance is achieved. The flow chart of these steps is 
shown in Figure 2. 
 
 
5. NUMERICAL EXAMPLE 
 
A ten-storey shear frame is controlled by (1 10)r r≤ ≤  viscous dampers. The storey mass and sto-
rey stiffness of the uncontrolled structure are shown in Table 1. With the application of Raleigh damp-
ing, the damping ratios for the first two vibrational modes of the entire building are assumed to be 0.02. 
The computed natural frequencies are 4.53, 11.92, 19.19, 25.92, 31.94, 38.82, 43.44, 47.40, 50.08 and 
50.92 rad/sec. The threshold values, appearing in equations (3) and (6), of structural inter-storey drifts, 
inter-storey velocities, storey accelerations and control forces are 10 mm, 100 mm/sec, 3000 mm/sec2, 
200 kN, respectively. A physically-motivated stochastic ground motion model, specifically, a Kanai-
Tajimi model with random site parameters is employed to simulate the ground motions, which is given 
by (Li and Ai, 2006) 
 

                           (8) 
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where  are the frequency domain expressions of ground motions at the engineer-

ing site and the bedrock, respectively; 
0

( , , )bω ζ= Θ ΘΘ Θ  is the random vector characterizing the 

randomness involved in the ground motion at the surface of the engineering site, which is used to 
model the randomness inherent in systems. 

0
,ω ζΘ Θ

 
are the random parameters denoting the random 

nature of the site soil, the predominant frequency of the engineering site 0ω  and the equivalent damp-



ing ratio ζ , respectively; b
, 1{ }sb b i i== ΘΘ  is the random variables characterizing the randomness 

involved in the ground motion at the bedrock coming from the properties of the sources and the prop-
agation path, bs  being the number of the random variables involved in this stage. 

0
( , , )gH ω ζ ωΘ Θ

 
is a frequency transfer function; ω  is the circular frequency; i  is the unit of imaginary number 

1− . The time history of the stochastic ground motion could then be obtained by the inverse Fourier 
transformation: 
 

                             (10) 
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Figure 2. Flow chart of resolution procedure of integrated design. 

 
Table 1. Parameters of the ten-storey shear frame. 

Storey no. 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 

Mass 
(1×104kg) 2.4 2.4 2.0 2.0 1.8 1.8 1.6 1.6 1.2 1.2 

Stiffness (kN/mm) 18 18 14 14 12 12 10 10 9.6 9.6 
 
Totally 221 representative points with corresponding assigned-probabilities are selected using the tan-
gent spheres method (Li and Chen, 2007) and accordingly representative time histories of ground ac-
celerations are synthesized. The predetermined objective of structural optimal control is designing the 



parameters and placement of the least number of dampers to reach the control efficiency of dampers 
fully distributed in the structure. As an assessment objective of structural optimal performance, the ful-
ly distributed dampers are placed in the structure simultaneously, and their parameters are designed as 
the same. 
 
The optimal placement and parameters of newly added viscous dampers at each sequence are shown in 
Table 2. It is seen that with only three optimally located dampers, a similar performance is achieved to 
that of a structural system that is fully controlled. The three dampers are distributed in the inter-6-7-
storey, the inter-9-10-storey, and the inter-4-5-storey in turn. Furthermore, the parameters vector in the 
matrix function of generalized optimal control policy is given by 

(Cd
*, Kd

*, L*) =
0 0 0 0 0.155 0 0.252 0 0 0.100
0 0 0 0 0.098 0 0.111 0 0 0.100
0 0 0 0 3 0 1 0 0 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

T

                     (11) 

where matrices * *,d dC K and *L have been unfolded into the first, second, and third rows, respectively. 
 
Table 2. Optimal placement and parameters of newly added viscoelastic damper in sequences. 

   * Initial values of parameters are 0.1dc =  kN×sec/mm,
 0.1dk = kN/mm. 

 
Figure 3 shows the relationship between the added dampers and the storey controllability index. It is 
clear that the storey controllability indices drop down rapidly after the damper with present optimal 
parameters is laid on the current optimal placement. The controllability index of inter-6-7-storey is 
always maximum among those of the inter-storeys in all the sequences, whereas the optimal place-
ment does not tend to be the inter-storeys near to inter-6-7-storey since the design criterion of the 
MinSCIG not that of the MaxSCI is employed. Comparison between the two design criteria is illus-
trated in Figure 4, which shows that using three dampers can reach the control objective when the 
MinSCIG is used. Four dampers, however, are needed to achieve the same control effectiveness if the 
MaxSCI is used.  
 
Table 3. System exceedance probabilities of quantities in sequences. 

Sequence no. 
System exceedance probabilities Objective

function J
,f dP  ,f vP  ,f aP  ,f uP  

0 0.9952 0.8188 0.9599 -- 1.2911 

1 0.4195 0.6085 0.5483 3.60×10-7 0.4235 

2 0.3226 0.4373 0.1888 0.0000 0.1655 

3 0.0545 0.1853 0.0671 0.0000 0.0209 

Fully distributed 0.1217 0.1886 0.0052 0.0000 0.0252 

 
The system exceedance probabilities of quantities in sequences including inter-storey drift, inter-
storey velocity, storey acceleration and inter-storey control force, are listed in Table 3. It is indicated 

Sequence no. Topology vector 
Parameters of newly added viscoelastic damper* 

dc (kN×sec/mm) 
dk  (kN/mm) 

0 [0 0 0 0 0 0 0 0 0 0]T -- -- 

1 [0 0 0 0 0 0 1 0 0 0]T 0.252 0.111 

2 [0 0 0 0 0 0 1 0 0 2]T 0.100 0.100 

3 [0 0 0 0 3 0 1 0 0 2]T 0.155 0.098 

Fully distributed [1 1 1 1 1 1 1 1 1 1]T 0.374 0.127 



that the system reliability of quantities is gradually enhanced with the deployment of dampers. The 
objective function of sequence 3 reaches the same level as that of the sequence of fully distributed 
dampers (the objective functions have the same magnitude). It reveals that the structural system has 
achieved system safety, system serviceability, system comfortability and system workability. Com-
pared with the sequence, meanwhile, of fully distributed dampers, sequence 3 exhibits a better dis-
placement control and a worse acceleration control. 
 
The second-order statistics of extreme inter-storey drifts in different sequences are exposed in Figure 
5. It is seen that the mean of inter-storey drift becomes smaller with the dampers being added, whereas 
the standard deviation of inter-storey drifts of the storeys above the seventh floor increases when the 
first damper is placed in inter-6-7-storey, while it goes down rapidly when the second damper is 
placed. It is noted that too few control devices may result in amplification of the local response of the 
structure. In brief, the proposed sequential procedure can gain the optimal system reliability with a 
minimum control effort. The controlled system response is significantly reduced and becomes 
smoother along the height of the structure, which results in a desirable structural performance. 
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Figure 3. Relationship between added dampers and storey controllability index. 
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Figure 4. Comparison between design criteria of the MinSCIG and the MaxSCI. 
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(a) Mean of inter-storey drift.     (b) Standard deviation of inter-storey drift. 

Figure 5. Second-order statistics of extreme inter-storey drift. 
 
 
6. CONCLUDING REMARKS 
 
Modern structural designs are not only in demand of accommodating safe residences but also in de-
mand of providing available spaces as possible. The optimal control device placement and optimal pa-
rameter design, therefore, should be of the same practical significance. In this paper, an integrated 
scheme with routine of two-step optimization serving to schedule the optimal topology and optimal 
parameters of viscous dampers mounted on passively controlled structures is proposed. Numerical re-
sults reveal that the proposed integrated scheme can achieve the maximum control effectiveness with 
the minimum control effort. The system reliability of quantities is gradually enhanced with the de-
ployment of dampers resulting in a desirable structural performance. In addition, using the design 
strategy of the defined minimum storey controllability index gradient achieves the objective perfor-
mance more efficiently than that of the maximum storey controllability index currently in use. Besides, 
following the placement of each damper, one might realize that decision regarding the system reliabil-
ity of structure can be updated, in a multistage manner, before deciding on whether to proceed with 
deploying additional dampers. 
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