
On Damping Created by the Heterogeneity of the
Mechanical Properties in RC Frame Seismic
Analysis

P. Jehel & R. Cottereau
Laboratoire MSSMat (UMR 8579),́Ecole Centrale Paris, CNRS
Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France
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SUMMARY:
In the dynamic analysis of structural engineering systems,it is common practice to introduce additional damp-
ing models to reproduce some of the features observed experimentally. We report here on a preliminary work
towards an alternative path for material damping, that aimsat reproducing these features through the consideration
only of the heterogeneous character of the yield stress field. The heterogeneity is parameterized by a stochastic
model, controlled by three parameters only: a mean value, a variance parameter and a correlation length. For a
single-degree-of-freedom elasto-plastic system with linear kinematic hardening, we show that such a variability
indeed creates the patterns that are classically associated to viscous damping, and that would otherwise be mod-
eled through nonlinear hardening, local hysteresis loops or other such complex constitutive models. A quasi-static
force-displacement experiment and the dynamic bending response of a cantilever beam are presented as illustra-
tion.

Keywords: Damping, reinforced concrete, fiber beam element, stochastic inelastic constitutive law, material het-
erogeneity.

1. INTRODUCTION

1.1. Motivations

Within the last few decades, a great deal of attention was paid to the comprehension and modeling
of damping mechanisms in inelastic time-history analyses.For instance, these questions occupy an
important share of the latest reports on seismic design (PEER/ATC-72-1 October 2010, section 2.4).
The common practice consists in simply adding a damping model to the inelastic structural model,
to reproduce the phenomena observed experimentally. However, the choices of damping model and
parameters are not necessarily founded on a rational basis.In particular, the widely used Rayleigh
damping is well known to lack physical background, even whencare is taken to avoid spurious damping
forces (Charney 2008, Hall 2006).

We try in this paper to circumvent the need to introduce thesenon physically-based damping models by
observing that the relevant experimental observations canbe equally well explained by the simple in-
troduction of spatial variability in the parameters of the inelastic structural model. In particular, we will
report here on observations of damping arising from the consideration of the spatial fluctuations of the
yield stress in an inelastic reinforced (RC) concrete frameelement. This heterogeneity will be introduced
through a stochastic model of the mechanical properties andboth a quasi-static force-displacement ex-
periment and the dynamic bending response of a cantilever beam will be investigated. Special attention
will be devoted to the capability of the model for dissipating energy even for low-amplitude loadings,
which is a key issue for earthquake engineering applications.

1.2. Modeling concrete in fiber frame elements

A numerical representation of the mesoscopic structure of concrete has been developed using a spatial
truss model and is capable of representing the salient characteristics of concrete in uni- and multi-axial
loading conditions (Benkemoun et al. 2010). Because such a model is very demanding from a computa-
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tional point of view, it is not realistic to use it for structural engineering applications. In RC fiber frame
element model, each beam (column) control section is divided into fibers that represent either concrete
or steel, with the appropriate uniaxial behavior law. The computation is thus rendered more efficient.

In (Jehel et al. 2010), a concrete constitutive law is developed in the framework ofthermodynamics with
internal variables(Maugin 1999). It is capable of representing, for the compression part: viscoelastic
behavior, permanent deformation, loss of stiffness, strain hardening and softening, local hysteresis loops,
and for the tension part: elastic brittle response. All these phenomena are necessary to properly repre-
sent the inelastic response – the energy dissipative phenomena that contribute to the overall structural
damping – of a concrete block in uniaxial cyclic loading. Fora given material, it is generally taken for
granted that the same behavior law can be assigned to every numerical integration point (fiber centroids
in the beam control sections).

1.3. Stochastic heterogeneous model

Several authors in structural engineering literature havealready considered stochastic heterogeneous
models of the mechanical parameters. Indeed, those are often used in order to take into account the
uncertainty in the parameters and their influence on mechanical behavior. In (Stefanou & Fragiadakis
2009), steel frames with spatially varying Young’s modulusand yield stress are generated and the prop-
agation of this initial heterogeneity on the structural dynamic inelastic response is investigated through
Monte Carlo simulations (MCS). In (Real et al. 2003), uncertain material and geometrical properties
are considered in the analysis of a 2D reinforced concrete beam. The concrete finite element mesh is
composed of 2D plane stress elements with three constitutive parameters, which vary at each numeri-
cal integration point according to the fluctuations of threecorrelated 2D Gaussian random fields. Steel
rebars are introduced as rigid lines in concrete elements and with material uncertainty too. Variability
of the beam height is also introduced. MCS techniques are used to measure the induced uncertainty on
the structural response. Material and geometrical variability in RC frame structures are also considered
in (Lee & Mosalam 2004). The authors develop a stochastic finite element method based on a beam
element that combines both the fiber beam formulation and themidpoint method for random field repre-
sentation. MCS are performed with material variability in both concrete and steel, and in both the beam
cross section and along its length; geometric variability is also considered.

Although the present paper will make use of the same type of stochastic models as the authors above,
it should be stressed that the objective here is altogether different. In the literature, the objective is
to represent the influence of uncertainty using many realizations of the random medium, along with
statistical analysis (averages of the solution, variance,etc). Our objective, here, is to observe on each
single realization of the random medium, the influence of theheterogeneity, in particular with a view
at experimental features that are more classically taken into account today through damping models.
There is hence no statistical analysis involved, once a realization of the random model of mechanical
parameters has been drawn.

1.4. Outline

In the following section, we recall the theoretical formulation of the inelastic fiber frame element that
will then be used for numerical applications. In section 3, the uniaxial stochastic local constitutive model
to be assigned to every concrete fiber is presented. It is an elasto-plastic law with linear kinematic hard-
ening and spatially variable yield stress. This model has toconvey the heterogeneous nature of concrete
at the fiber scale, relying on the fluctuations of a lognormal random field with a correlation length de-
fined in accordance with the size of the aggregates in concrete. The last section is dedicated to numerical
applications.

2. FIBER BEAM ELEMENT FORMULATION FOR SEISMIC ANALYSIS

In this section, we recall the theoretical basis for the displacement-based formulation of a fiber beam
element with Euler-Bernoulli kinematics assumption. Nevertheless, note that force-based and mixed
formulations exist (Taylor et al. 2003) and that, in (Stefanou & Fragiadakis 2009), it is claimed that
the mixed formulation used offers significant computational advantages for the analysis of systems with
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stochastic properties, compared to the classical displacement-based formulation.

2.1. Continuum Euler-Bernoulli beam

We consider a 2D continuumΩ ⊂ R
2 with frontier ∂Ω constrained to the displacementu

ext(t) on
the portion∂Ωu and to the external pressurefs(t) on ∂Ωσ. Besides, we set∂Ω = ∂Ωu ∪ ∂Ωσ

and∂Ωu ∩ ∂Ωσ = ∅. We denote(e1, e2) a cartesian basis ofR2 so thatx = x1e1 + x2e2 and
U = {u(x, t) : Ω× [0, T ] 7→ R

2 | ∀x ∈ ∂Ωu, u(x, t) = u
ext(t) ; u(x, 0) = u0(x) ; u̇(x, 0) = u̇0(x)}.

The so-called Euler-Bernoulli kinematics assumption for adisplacement fieldu(x, t) ∈ U can be writ-
ten:

u(x, t) =

(

u1(x, t) = uS1 (x1, t)− x2θ
S
3 (x1, t)

u2(x, t) = uS2 (x1, t)

)

with θS3 (x1, t) =
∂uS2 (x1, t)

∂x1
(1)

With the hypothesis of small transformations, the strain tensor reads:

ǫ(x, t) =
1

2

(

D(u) +D(u)T
)

(2)

whereD(·) = ∂·
∂xi

⊗ ei is the vector gradient operator.

We express the material constitutive behavior law as the following relation between the stress and strain
fields:

σ(ǫ) =
∂ψ(ǫ)

∂ǫ
, ∀x ∈ Ω, ∀t ∈ [0, T ] (3)

whereσ ∈ S = {σ(x, t) : Ω× [0, T ] 7→ R
2 | ∀x ∈ ∂Ωσ,σ ·n(x) = fs(x, t)}, with n(x) the unit vector

orthogonal to∂Ω and oriented toward the exterior ofΩ. ψ(ǫ) is the stored energy function.

The problem of the dynamic evolution of a beam for earthquakeengineering applications can then be
set as:
Given the external forcesfs(x, t) andfv(x, t), and the ground motion – supposed to be the same at each
point of the base of the structure –ug(t), findu(x, t) ∈ U andσ(x, t) ∈ S, such that:

∫

Ω
(Divσ + fv − ρ (üg + ü)) · δu dΩ = 0 , ∀δu ∈ U0 (4)

whereU0 = {δu : Ω× [0, T ] 7→ R
2 | ∀x ∈ ∂Ωu, δu(x, t) = 0} andu(x, t) is the displacement field of

the structure in the moving frame attached to the ground.

Using the relationDivσ · δu = div(σ · δu)− σ : D(δu) and after integration by parts:
∫

Ω
ρü · δu dΩ+

∫

Ω
σ : D(δu) dΩ =

∫

Ω
fv · δu dΩ+

∫

∂Ω
fs · δu d∂Ω−

∫

Ω
ρüg · δu dΩ (5)

Introducing the Euler-Bernoulli kinematic assumption, wehave:

δu =

(

δuS1 (x1, t)− x2δ
∂uS

2
(x1,t)
∂x1

δuS2 (x1, t)

)

(6)

leading to the following expression of the internal energy term:

∫

Ω
σ : D(δu) dΩ =

∫

L

{

∫

S(x1)
σ11

(

∂δuS1
∂x1

− x2
∂2δuS2
∂x21

)

dS(x1)

}

dx1 (7)
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2.2. Fiber tangent modulus

Beam sections are divided into fibers according to the following relation:

∫

S(x1)
h(xf , t)dS(x1) ≈

nfib
∑

f=1

Af (x1)h(x
f , t) with x

f = x1e1 + x
f
2e2 (8)

whereAf (x1) is the section area andxf2 is the position of the centroid of the fiberf in the beam section
S(x1).

To any displacement evolutionu(x, t + ∆t) = u(x, t) + ∆u(x, t) is associated a strain increment
∆ǫ(x, t). Assuming linear evolution of the stress field with respect to the strain field during time step
∆t, and uniaxial inelastic behavior lawσ11 = σ11(ǫ11), we have the following expression:

∫

Ω
σ(ǫ+∆ǫ) : D(δu) dΩ =

∫

Ω
σ(ǫ) : D(δu) dΩ+

∫

L

nfib
∑

f=1

Af dσ
f
11

dǫ
f
11

∆ǫf11

(

∂δuS1
∂x1

− x
f
2

∂2δuS2
∂x21

)

dx1

(9)

whereCf
11 = dσ

f
11

dǫ
f
11

is the tangent modulus associated to the uniaxial material constitutive law of fiber

f . For reinforced concrete beams, this corresponds to eitherconcrete or steel pointwise constitutive
response.

In the next section, we derive the equations for computing the tangent modulus and the uniaxial stress
in every beam fibers. For the sake of conciseness, we setC = C

f
11 andσ = σ

f
11.

3. STOCHASTIC ELASTO-PLASTIC CONSTITUTIVE MODEL

As first investigation, the local material constitutive response at each fiber centroid is modeled by a
uniaxial elasto-plastic law with linear kinematic hardening, and spatial variability is introduced by con-
sidering heterogeneous yield stress.

The three ingredients for an elasto-plastic material constitutive law developed in the framework of ther-
modynamics with internal variables (Maugin 1999) are i) thesplit of the total deformation into an elastic
and a plastic part, ii) a stored energy functionψ, and iii) a yield criterium functioñφ:

ǫ = ǫe + ǫp (10)

ψ(ǫe, λ) = ψe(ǫe) + Λp(λ) with ψe =
1

2
ǫeEǫe and Λp =

1

2
λHλ (11)

φ̃(σ) ≤ 0 (12)

We introduce spatial variability in the material behavior by introducing the fluctuations of a random field
f0(x) in the criteria function:

φ(σ, κ) = |σ + κ| − f0(x)σy (13)

whereκ is the so-called back-stress andσy the mean yield stress. In this paper,f0(x) is modeled as
a lognormal distribution function with meanµ = 1, varianceτ , and triangular power spectrum with
correlation lengthℓc = 1 cm. As we only aim here at reporting first investigations on the influence of
the variability of the yield stress on damping-like behavior of beams, we will not further discuss this
choice. However, for example using the Maximum Entropy Principle (Shannon 1948, Jaynes 1957),
it may be possible to propose random models more adapted for this specific mechanical parameter
(see (Soize 2006, Cottereau et al. 2008, Ta et al. 2010) for examples of this type of approach in the
linear elastic case).

The mechanical dissipation due to inelastic evolution of the system is defined as:

Ḋ = σǫ̇− ψ̇ =

(

σ −
dψe

dǫe

)

ǫ̇e + σǫ̇p + κλ̇ (14)
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whereκ = −dΛp

dλ
= −Hλ. During elastic evolution, the internal variables are frozen and material

dissipation is null:
(

σ −
dψe

dǫe

)

ǫ̇e = 0 ⇒ σ =
dψe

dǫe
= Eǫe (15)

⇒ Ḋ = σǫ̇p + κλ̇ (16)

The evolution of the interval variables is driven by appealing to the principle of maximum plastic dissi-
pation which states that among all the dual variables sets(σ⋆, κ⋆) satisfyingφ(σ⋆, κ⋆) ≤ 0, the actual
one maximizesḊ. Rewriting this maximization problem as the minimization of −Ḋ under the constraint
φ ≤ 0 and with non-negative plastic multiplierγ̇, the Lagrange multiplier method is used (Strang 1986):

(σ, κ, γ̇) = argmin
φ⋆≤0;γ̇⋆>0

L with L =
(

−Ḋ(σ⋆, κ⋆) + γ̇⋆φ(σ⋆, κ⋆)
)

(17)

The solution of this problem is:

∂L

∂σ⋆
|σ = 0 ⇒ ǫ̇ = γ̇

∂φ

∂σ
(18)

∂L

∂κ⋆
|κ = 0 ⇒ λ̇ = γ̇

∂φ

∂κ
(19)

∂L

∂γ̇⋆
|γ̇ = 0 ⇒

∂φ

∂γ̇
= 0 (20)

γ̇ ≥ 0 ; φ ≤ 0 (21)

The expression of the plastic multiplierγ̇ can be determined according to the so-called consistency
condition (Eqn. 20) which states that, within plastic evolution, the yield criterion remains equal to zero,
that is:

φ̇ = 0 ⇒ γ̇ =
∂φ
∂σ
Eǫ̇

∂φ
∂σ
E ∂φ

∂σ
+ ∂φ

∂κ
H ∂φ

∂κ

≥ 0 (22)

It is now possible to give the expression of the rate of evolution of sigma and of the tangent modulus
C = dσ

dǫ
:

σ̇ = E

(

ǫ̇− γ̇
∂φ

∂σ

)

⇒ C =

{

E if γ̇ = 0 (elasticity)
EH
E+H

if γ̇ > 0 (plastic evolution) (23)

According to the position considered in the beam, the yield stress – defined as a lognormal random
variable – is allowed to vary, leading to spatial variability in the material behavior law. To illustrate the
effect of this variability on the local constitutive response, Fig. 1 presents the local constitutive response
at three different points in the beam. Although the yield stress is considered heterogeneous, the loading
and unloading slopes remain constant throughout.

4. NUMERICAL APPLICATIONS

4.1. Preliminaries

The fiber element and the constitutive behavior law have beenimplemented in the finite element com-
puter program FEAP (FEAP 2002). Fibers are defined as a regular mesh of rectangles. Realizations of
the lognormal random fieldf0(x) are generated using the spectral representation method (Shinozuka &
Deodatis 1991) on a regular square grid. The size of each square is equal to one quarter of the correlation
lengthℓc = 1 cm, which corresponds to approximately half the usual maximum aggregate size. In every
element control section, and at every fiber centroid, the random field is, for the sake of simplicity in this
preliminary investigation, interpolated by linear polynomial functions.

At every numerical integration point (NIP), classical return-mapping algorithm (Simo & Hughes 1998,
Ibrahimbegovic 2009) is applied to update the internal variables, the axial stress and the tangent modu-
lus. Because only linear hardening is considered, no iterative updating procedure is required at the NIP
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Figure 1: Local elasto-plastic behavior law with linear kinematic hardening. The yield stress varies according to
the position in the beam. During elastic loading/unloading, the slope isE; during plastic loading, it isEH

E+H
.

level, which renders local computation very fast and robust. In the case of dynamic applications, the
Newmark method with parametersβ = 0.25 andγ = 0.5 will be used.

It should be recalled here that no damping model,e.g. Rayleigh damping, is used. All the energy
dissipation and apparent damping that appear are a consequence of the combination of the simple local
elasto-plastic model and of the heterogeneous character ofthe yield stress.

4.2. Uniaxial force-displacement behavior

We consider a concrete bar of lengthL = 2 m and rectangular section of areaA = 20 × 30 cm2, with
right end fixed and imposed displacement at left end. Only onecontrol section is considered. First, we
investigate the influence of the varianceτ of the random field on the bar response. Figure 2 shows the
bar response in cyclic compression for several values of thevariance parameter. The curves are plotted
with the following set of parameters:E = 30 GPa,H = 10 GPa,σy = 15 MPa, andnfib = 20× 30.
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Figure 2: Concrete bar response in cyclic compression for several values of the variance parameter of the lognormal
random field. Material constitutive law is elasto-plastic with linear kinematic hardening.
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One can observe in Figure 2 that the higher the variance, i) the sooner begins the hardening phase, and ii)
the larger are the hysteresis loops during unloading-reloading cycles. Modeling the latter phenomenon
would require advanced material constitutive law in the absence of variability (Ragueneau et al. 2000, Je-
hel et al. 2010) and is a key point to grasp the material contribution to the overall structural damping in
earthquake engineering applications. Besides, we recall that the kinematic hardening introduced in the
material model is linear and, thus, accounting for spatial variability of the yield stress leads to a smooth
structural response that would otherwise only be obtained with a non-linear kinematic hardening model.

Then, we focus on two interrelated issues: How is the bar response dependent i) on the realizationFi of
the random field, and ii) on the number of fibersnfib in the control section? In Table 1, the cumulated
plastic energyEp dissipated during the compressive cyclic loading is computed for several realizations
of the same random field –τ = 0.1 – and for several fiber discretizations. It is shown that, fordis-
cretization finer than20 × 30 fibers, the cumulated plastic energyEp significantly depends neither on
the random field realization nor on the fiber discretization.

Table 1: Cumulated plastic energy dissipated during compressive cyclic loading for several realizations of the same
random field (lines) and for several fiber sizes (columns).

[kN.m] 4× 6 6× 9 10× 15 20× 30 30× 45 50× 75

F1 5540 5533 5503 5474 5487 5486
F2 5548 5492 5517 5449 5462 5466
F3 5355 5478 5464 5459 5468 5468
F4 5340 5381 5483 5483 5491 5492

Finally, we add a linear softening phase to the elasto-plastic behavior law, as detailed in (Jehel et al.
2010). As first investigation, the ultimate stressσu(x) before softening begins is modified according to
the fluctuations of the same random field as the yield stressσy(x). Figure 3 shows the response of the
bar obtained with the same set of parameters as in Figure 2, and the following additional parameters
for linear softening:K = −5 GPa andσu = 50 MPa; moreover, the variance is set toτ = 0.95, and
nfib = 20× 30.
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Figure 3: Concrete bar response in cyclic compression when linear softening is added to the elasto-plastic material
constitutive law with linear kinematic hardening (τ = 0.95).

In Figure 3, one can see that a nonlinear hardening phase is reproduced by the model, even if the local
material response – at every NIP – only is capable of representing linear hardening. Hysteresis loops
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are again generated during unloading-reloading cycles. The behavior reproduced here is much more
in accordance with the actual behavior of concrete than in Figure 2 (see classical strain-stress concrete
experimental response in cyclic compressive loading in Figure 4 (Ramtani 1990)).
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Figure 4: Strain-stress concrete experimental response inpseudo-static cyclic compressive loading.

4.3. Dynamic bending response of a RC cantilever beam

The RC cantilever beam considered here has the same geometryas the bar in the previous experiments,
but the boundary conditions are different: the left end is fixed and, at the right end, a constant com-
pressive force of1 MN is applied within1 s and, att = 1 s, an impulse force is imposed orthogonally
to the beam longitudinal axise1, so that the larger moment of inertia is solicited. An additional mass
M = 600 kg is located at the right end. The fundamental eigenperiod is T0 = 0.1 s. Two control
sections, with uncorrelated mechanical properties, are considered along the beam element.

The beam is made of both concrete and four rebars of diameterφ = 18 mm and whose centroid is
positioned at4 cm of the section corners. For concrete, the same set of parameters as in the previ-
ous examples is considered, both for the mechanical properties and for the random field. For steel, the
elasto-plastic constitutive law with linear kinematic hardening presented in section 3 is used, but without
introducing variability and withE = 200 GPa,H = 10 GPa, andσy = 250 MPa. Each steel rebar is
represented by one steel fiber.

Figure 5 shows the displacement time-history of the free endof the cantilever beam for three simulations
of the same beam model but with different variance parameterof the lognormal random field describ-
ing the spatial variability ofσy(x) andσu(x). In accordance with the better capability of the concrete
behavior law for dissipating energy even for low-amplitudecycles already pointed out for the higher
variance in Figure 3, one can see in Figure 5 that almost all the imparted energy is dissipated after14 s
whenτ = 1.06. We recall that no damping –e.g.Rayleigh damping – has been added in the simulations.
This experiment shows that the stochastic constitutive model developed in this paper can represent the
structural effects of the material energy dissipation mechanisms.

5. CONCLUSIONS AND ONGOING WORK

For a single-degree-of-freedom elasto-plastic system with linear kinematic hardening, we have shown
here two illustrations of the capability of a heterogeneousmodel of the yield stress to create patterns
classically associated to material viscous damping. Thesepatterns would otherwise be modeled through
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Figure 5: Single DOF RC cantilever beam dynamic response in free vibration: free-end displacement time-history.

either more advanced material constitutive models or additional damping models,e.g. Rayleigh damp-
ing, lacking physical basis. Although the underlying modelfor the yield stress is stochastic, the simula-
tions and results are valid for each realization.

The main research prospect after this first illustration lies in the precise characterization of the stochastic
model based on the information from the micro-scale (such asaggregate size, granulometry,etc.). In-
deed, at the scale considered, the variance in particular issome averaged variance of the interpolated ran-
dom field, which is different from the variance of a corresponding micro-scale random field (Vanmarcke
et al. 1986). This will consist in choosing, based on rational arguments, the type of first-order marginal
law and correlation model, as well as the value of the corresponding parameters (mean value, variance
parameter, and correlation length). This choice and study could be performed in the context of stochastic
micro-meso scale transition (Soize 2008, Arnst & Ghanem 2008, Cottereau et al. 2011).
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