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SUMMARY:

In the dynamic analysis of structural engineering systetris,common practice to introduce additional damp-
ing models to reproduce some of the features observed expetally. We report here on a preliminary work
towards an alternative path for material damping, that @itmeproducing these features through the consideration
only of the heterogeneous character of the yield stress fieh& heterogeneity is parameterized by a stochastic
model, controlled by three parameters only: a mean valueyiance parameter and a correlation length. For a
single-degree-of-freedom elasto-plastic system withdimkinematic hardening, we show that such a variability
indeed creates the patterns that are classically asso¢@mtescous damping, and that would otherwise be mod-
eled through nonlinear hardening, local hysteresis loopsteer such complex constitutive models. A quasi-static
force-displacement experiment and the dynamic bendirprese of a cantilever beam are presented as illustra-
tion.

Keywords: Damping, reinforced concrete, fiber beam elejstathastic inelastic constitutive law, material het-
erogeneity.

1. INTRODUCTION
1.1. Motivations

Within the last few decades, a great deal of attention wad fwathe comprehension and modeling
of damping mechanisms in inelastic time-history analysesr instance, these questions occupy an
important share of the latest reports on seismic design RPEEC-72-1 October 2010, section 2.4).
The common practice consists in simply adding a damping iniodtéhe inelastic structural model,
to reproduce the phenomena observed experimentally. Howthe choices of damping model and
parameters are not necessarily founded on a rational basiparticular, the widely used Rayleigh
damping is well known to lack physical background, even wteme is taken to avoid spurious damping
forces (Charney 2008, Hall 2006).

We try in this paper to circumvent the need to introduce tmesephysically-based damping models by
observing that the relevant experimental observationseaequally well explained by the simple in-
troduction of spatial variability in the parameters of thelastic structural model. In particular, we will
report here on observations of damping arising from the idenation of the spatial fluctuations of the
yield stress in an inelastic reinforced (RC) concrete frateenent. This heterogeneity will be introduced
through a stochastic model of the mechanical propertiedatitda quasi-static force-displacement ex-
periment and the dynamic bending response of a cantilexaambvéll be investigated. Special attention
will be devoted to the capability of the model for dissipgtienergy even for low-amplitude loadings,
which is a key issue for earthquake engineering application

1.2. Modeling concrete in fiber frame elements
A numerical representation of the mesoscopic structure@péiete has been developed using a spatial

truss model and is capable of representing the salient ctegistics of concrete in uni- and multi-axial
loading conditions (Benkemoun et al. 2010). Because sucbdehis very demanding from a computa-



tional point of view, it is not realistic to use it for struct engineering applications. In RC fiber frame
element model, each beam (column) control section is divid fibers that represent either concrete
or steel, with the appropriate uniaxial behavior law. Thepatation is thus rendered more efficient.

In (Jehel et al. 2010), a concrete constitutive law is dgwediin the framework ahermodynamics with
internal variables(Maugin 1999). It is capable of representing, for the corapian part: viscoelastic
behavior, permanent deformation, loss of stiffness,strardening and softening, local hysteresis loops,
and for the tension part: elastic brittle response. All ghelsenomena are necessary to properly repre-
sent the inelastic response — the energy dissipative phemathat contribute to the overall structural
damping — of a concrete block in uniaxial cyclic loading. Bagiven material, it is generally taken for
granted that the same behavior law can be assigned to evergrival integration point (fiber centroids

in the beam control sections).

1.3. Stochastic heterogeneous model

Several authors in structural engineering literature relveady considered stochastic heterogeneous
models of the mechanical parameters. Indeed, those am wsed in order to take into account the
uncertainty in the parameters and their influence on mechbbehavior. In (Stefanou & Fragiadakis
2009), steel frames with spatially varying Young’s modwdnsl yield stress are generated and the prop-
agation of this initial heterogeneity on the structural ayric inelastic response is investigated through
Monte Carlo simulations (MCS). In (Real et al. 2003), unaierimaterial and geometrical properties
are considered in the analysis of a 2D reinforced concredenbel'he concrete finite element mesh is
composed of 2D plane stress elements with three consétpvameters, which vary at each numeri-
cal integration point according to the fluctuations of thceerelated 2D Gaussian random fields. Steel
rebars are introduced as rigid lines in concrete elemertsdth material uncertainty too. Variability
of the beam height is also introduced. MCS techniques aré toseeasure the induced uncertainty on
the structural response. Material and geometrical vditiain RC frame structures are also considered
in (Lee & Mosalam 2004). The authors develop a stochastitefilement method based on a beam
element that combines both the fiber beam formulation anchitipoint method for random field repre-
sentation. MCS are performed with material variability attbconcrete and steel, and in both the beam
cross section and along its length; geometric variabitglso considered.

Although the present paper will make use of the same typeochsistic models as the authors above,
it should be stressed that the objective here is altogetiffereht. In the literature, the objective is
to represent the influence of uncertainty using many re#@iza of the random medium, along with
statistical analysis (averages of the solution, variapt®, Our objective, here, is to observe on each
single realization of the random medium, the influence oftteterogeneity, in particular with a view
at experimental features that are more classically takenancount today through damping models.
There is hence no statistical analysis involved, once azegadn of the random model of mechanical
parameters has been drawn.

1.4. Outline

In the following section, we recall the theoretical forntida of the inelastic fiber frame element that
will then be used for numerical applications. In sectiorh®,dniaxial stochastic local constitutive model
to be assigned to every concrete fiber is presented. It issatoeplastic law with linear kinematic hard-
ening and spatially variable yield stress. This model ha®twey the heterogeneous nature of concrete
at the fiber scale, relying on the fluctuations of a lognorraaldom field with a correlation length de-
fined in accordance with the size of the aggregates in cancrék last section is dedicated to numerical
applications.

2. FIBER BEAM ELEMENT FORMULATION FOR SEISMIC ANALYSIS

In this section, we recall the theoretical basis for the ldispment-based formulation of a fiber beam
element with Euler-Bernoulli kinematics assumption. Néweless, note that force-based and mixed
formulations exist (Taylor et al. 2003) and that, in (Stefar& Fragiadakis 2009), it is claimed that

the mixed formulation used offers significant computatl@ivantages for the analysis of systems with



stochastic properties, compared to the classical displanebased formulation.
2.1. Continuum Euler-Bernoulli beam

We consider a 2D continuu? ¢ R? with frontier 9Q constrained to the displacementt®(¢) on
the portiond(?, and to the external pressufg(t) on 0f),. Besides, we sed? = 9Q, U 99,
andoQ, N 9, = @. We denotee;,es) a cartesian basis d&? so thatx = xje; + roe, and
U= {u(x,t): Qx[0,T] — R? | Vx € 0y, u(x,t) = u®(t); u(x,0) = ug(x) ; u(x,0) = 19(x)}.

The so-called Euler-Bernoulli kinematics assumption fdisplacement fielah(x, ¢) € U/ can be writ-
ten:

(ui(x,t) = uf (1, t) — 2205 (21, 1) , RTACTND)
ux,t) = < wlo) =) ) with 05t =% @

With the hypothesis of small transformations, the straiste reads:

1
€(x,t) = 5 (D(u) + D(u)") 2
whereD(-) = Z- © e; is the vector gradient operator.

We express the material constitutive behavior law as tHeviirhg relation between the stress and strain

fields:
U(e):ag—fj), Vx e, Vte[0,T] (3)

whereo € S = {o(x,t) : O x [0,T] — R? | ¥x € 9Q,,0 -n(x) = f5(x,t)}, with n(x) the unit vector
orthogonal t&)$2 and oriented toward the exterior Qf ¢(e) is the stored energy function.

The problem of the dynamic evolution of a beam for earthqueigineering applications can then be
set as:

Given the external forcefs(x, ¢t) andf, (x, t), and the ground motion — supposed to be the same at each
point of the base of the structureuy(t), findu(x,t) € ¢ ando(x,t) € S, such that:

/Q(Diva—kfv—p(ﬁg%—ﬁ))-5udQ:O, Vou € Uy 4)

whereldy = {6u : Q x [0,T] — R? | Vx € 99, du(x,t) = 0} andu(x, t) is the displacement field of
the structure in the moving frame attached to the ground.

Using the relatioive - du = div(o - 0u) — o : D(du) and after integration by parts:

/pii-éudQ+/U:D(éu)dQ:/fv-5udQ+/ fs-éudaﬁ—/pﬁg-éudQ (5)
Q Q Q o0 Q

Introducing the Euler-Bernoulli kinematic assumption, hewe:

Su = Suy (xq,t) — .%'25%;311’0 (6)
ous (z1,t)

leading to the following expression of the internal enegyt:

oous d%ous
:D(du) dQ = L 2 )ds d 7
/QU (6u) /L{/S(mffn < o, T2 22 > (951)} 1 (7)




2.2. Fiber tangent modulus

Beam sections are divided into fibers according to the fafigwelation:

Nygib

/( )h( f t dS Il ZAf 561 ) with Xf = Ii1€e1 —|—$£€2 (8)
S 1

whereA/ (z) is the section area ami is the position of the centroid of the fibgrin the beam section
S(Il)

To any displacement evolution(x,t + At) = u(x,t) + Au(x,t) is associated a strain increment
Ae(x,t). Assuming linear evolution of the stress field with respedhe strain field during time step
At, and uniaxial inelastic behavior lam; = 011(€11), we have the following expression:

KL pdo] duy  ;0%ous
. _ Y f 1 2
/Qa(e+Ae).D(5u)dQ_/Q (€) : D(6u) dQ+/ZA A <8x1 ) 52 >d1
(9)
WhereC{1 = d"“ is the tangent modulus associated to the uniaxial mateviadtdutive law of fiber

f. For reinforced concrete beams, this corresponds to ediiecrete or steel pointwise constitutive
response.

In the next section, we derive the equations for computiegdmgent modulus and the uniaxial stress
in every beam fibers. For the sake of conciseness, wé seC{l ando = a{l.

3. STOCHASTIC ELASTO-PLASTIC CONSTITUTIVE MODEL

As first investigation, the local material constitutive pesse at each fiber centroid is modeled by a
uniaxial elasto-plastic law with linear kinematic hardegiand spatial variability is introduced by con-
sidering heterogeneous yield stress.

The three ingredients for an elasto-plastic material étutise law developed in the framework of ther-
modynamics with internal variables (Maugin 1999) are i)kt of the total deformation into an elastic

and a plastic part, i) a stored energy functiopand iii) a yield criterium function:

€e=¢€°+¢P (10)
W€, A) = () + AP(N) with ) = %eeEee and AP — %AHA (11)
$(0) <0 (12)

We introduce spatial variability in the material behavigiititroducing the fluctuations of a random field
fo(x) in the criteria function:
¢(o, k) = |o + k| — fo(x)oy (13)

wherex is the so-called back-stress amgl the mean yield stress. In this papgs(x) is modeled as
a lognormal distribution function with meain = 1, variancer, and triangular power spectrum with
correlation lengtil, = 1 cm. As we only aim here at reporting first investigations amitifluence of
the variability of the yield stress on damping-like behawb beams, we will not further discuss this
choice. However, for example using the Maximum Entropy €&ple (Shannon 1948, Jaynes 1957),
it may be possible to propose random models more adaptedhiispecific mechanical parameter
(see (Soize 2006, Cottereau et al. 2008, Ta et al. 2010) fmmpbes of this type of approach in the
linear elastic case).

The mechanical dissipation due to inelastic evolution efdiastem is defined as:

we
de®

b:aé—zb:(a >6 + 0éP + kA (14)



wherex = —dd/‘; = —H\. During elastic evolution, the internal variables are éozand material
dissipation is null:

dup® dupe
= = FE¢° 1
<O’ dee> =0 = 0= € (15)
= D = o + kA (a6)

The evolution of the interval variables is driven by appaglio the principle of maximum plastic dissi-
pation which states that among all the dual variables (g€ts<*) satisfying¢(c*, x*) < 0, the actual

one maximize®. Rewriting this maximization problem as the minimizatidn-D under the constraint
¢ < 0 and with non-negative plastic multipliétr the Lagrange multiplier method is used (Strang 1986):

(0,K,7) = argmin L with L = (—D(J*, K*) + 4 p(o™, Ii*)) a7)
¢*<0;7*>0

The solution of this problem is:

oL 0o

@MZO = =95 (18)
o, L9

8L 3(;5_

720,¢§0 (21)

The expression of the plastic multipliér can be determined according to the so-called consistency
condition (Eqn[_2D) which states that, within plastic ewioin, the yield criterion remains equal to zero,
that is:

% pe

¢=0 = 7_8¢Ea¢+8¢H8¢>0 (22)

It is now possible to give the expression of the rate of ewotudf sigma and of the tangent modulus

C=4de;
de 96 E if 4 = 0 (elasticity)
o=FE (é - "ya—0> = U= { Ei_fg if 4 > 0 (plastic evolution) (23)

According to the position considered in the beam, the yi#ldss — defined as a lognormal random
variable — is allowed to vary, leading to spatial variapilit the material behavior law. To illustrate the
effect of this variability on the local constitutive resan Fig[l presents the local constitutive response
at three different points in the beam. Although the yieléstris considered heterogeneous, the loading
and unloading slopes remain constant throughout.

4. NUMERICAL APPLICATIONS
4.1. Preliminaries

The fiber element and the constitutive behavior law have maptemented in the finite element com-
puter program FEAP (FEAP 2002). Fibers are defined as a mregudsh of rectangles. Realizations of
the lognormal random field (x) are generated using the spectral representation methotb¢@ka &
Deodatis 1991) on aregular square grid. The size of eachiestguiagqual to one quarter of the correlation
length?. = 1 cm, which corresponds to approximately half the usual mariraggregate size. In every
element control section, and at every fiber centroid, thdwanfield is, for the sake of simplicity in this
preliminary investigation, interpolated by linear polynial functions.

At every numerical integration point (NIP), classical metimapping algorithm (Simo & Hughes 1998,

Ibrahimbegovic 2009) is applied to update the internalalzgs, the axial stress and the tangent modu-
lus. Because only linear hardening is considered, no ierapdating procedure is required at the NIP
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Figure 1: Local elasto-plastic behavior law with lineardinatic hardening. The yield stress varies according to
the position in the beam. During elastic loading/unloagthg slope ig~; during plastic loading, it is]%.

level, which renders local computation very fast and roblistthe case of dynamic applications, the
Newmark method with parametefs= 0.25 and~y = 0.5 will be used.

It should be recalled here that no damping moéet. Rayleigh damping, is used. All the energy
dissipation and apparent damping that appear are a consagjokthe combination of the simple local
elasto-plastic model and of the heterogeneous charactiee gield stress.

4.2. Uniaxial force-displacement behavior

We consider a concrete bar of length= 2 m and rectangular section of arda= 20 x 30 cn?, with

right end fixed and imposed displacement at left end. Onlycamgrol section is considered. First, we
investigate the influence of the variancef the random field on the bar response. Fidure 2 shows the
bar response in cyclic compression for several values ofdhiance parameter. The curves are plotted
with the following set of parameter#: = 30 GPa,H = 10 GPa,o, = 15 MPa, andn;, = 20 x 30.

/
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[E— //,/
) _1— f ,
(&) -
o , -
o 4
(e / o
— ’ -
S -15) /S = -
£ 7=0.09
= / — 7 =0.95
=) ’ ---7 =0.46
—oL s B
25 -6 -5 -4 -3 -2 -1 0
imposed displacement [m] x107

Figure 2: Concrete bar response in cyclic compression f@raévalues of the variance parameter of the lognormal
random field. Material constitutive law is elasto-plastithWinear kinematic hardening.



One can observe in Figuré 2 that the higher the variances Babner begins the hardening phase, and ii)
the larger are the hysteresis loops during unloading-déhgecycles. Modeling the latter phenomenon
would require advanced material constitutive law in theealog of variability (Ragueneau et al. 2000, Je-
hel et al. 2010) and is a key point to grasp the material doution to the overall structural damping in
earthquake engineering applications. Besides, we rdwlthe kinematic hardening introduced in the
material model is linear and, thus, accounting for spataiability of the yield stress leads to a smooth
structural response that would otherwise only be obtairigdanon-linear kinematic hardening model.

Then, we focus on two interrelated issues: How is the baorespdependent i) on the realizatidnof
the random field, and ii) on the number of fibers; in the control section? In Tablé 1, the cumulated
plastic energ\£? dissipated during the compressive cyclic loading is comgtior several realizations
of the same random field = = 0.1 — and for several fiber discretizations. It is shown that,disr
cretization finer thar20 x 30 fibers, the cumulated plastic energ§¥ significantly depends neither on
the random field realization nor on the fiber discretization.

Table 1: Cumulated plastic energy dissipated during cosgdre cyclic loading for several realizations of the same
random field (lines) and for several fiber sizes (columns).

[kN.m] | 4x6 | 6x9 | 10x15|20x30 | 30x45 | 50x75
Fi 5540 | 5533 | 5503 5474 5487 5486
Fa 5548 | 5492 | 5517 5449 5462 5466
F3 5355 | 5478 | 5464 5459 5468 5468
Fu 5340 | 5381 | 5483 5483 5491 5492

Finally, we add a linear softening phase to the elastodplasthavior law, as detailed in (Jehel et al.
2010). As first investigation, the ultimate stresgx) before softening begins is modified according to
the fluctuations of the same random field as the yield strg&s). Figure[3 shows the response of the
bar obtained with the same set of parameters as in Figured2thenfollowing additional parameters
for linear softening:K = —5 GPa andr, = 50 MPa; moreover, the variance is setite= 0.95, and
Nfip = 20 x 30.
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Figure 3: Concrete bar response in cyclic compression whear softening is added to the elasto-plastic material
constitutive law with linear kinematic hardening € 0.95).

In Figure[3, one can see that a nonlinear hardening phasgrisdueced by the model, even if the local
material response — at every NIP — only is capable of reptiegelinear hardening. Hysteresis loops
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are again generated during unloading-reloading cyclee Bhavior reproduced here is much more
in accordance with the actual behavior of concrete thangare[2 (see classical strain-stress concrete
experimental response in cyclic compressive loading inifelg (Ramtani 1990)).

-3.5 -3 -2.5 -2 -15 -1 -0.5 0 0.5 1
strain %1073

Figure 4: Strain-stress concrete experimental resporzseindo-static cyclic compressive loading.

4.3. Dynamic bending response of a RC cantilever beam

The RC cantilever beam considered here has the same ge@sédlry bar in the previous experiments,
but the boundary conditions are different: the left end isdidand, at the right end, a constant com-
pressive force of MN is applied withinl s and, at = 1 s, an impulse force is imposed orthogonally
to the beam longitudinal axis;, so that the larger moment of inertia is solicited. An additil mass
M = 600 kg is located at the right end. The fundamental eigenpesdd i= 0.1 s. Two control
sections, with uncorrelated mechanical properties, ansidered along the beam element.

The beam is made of both concrete and four rebars of diameter18 mm and whose centroid is
positioned a4 cm of the section corners. For concrete, the same set of péeasras in the previ-
ous examples is considered, both for the mechanical piepemd for the random field. For steel, the
elasto-plastic constitutive law with linear kinematic é@ning presented in section 3 is used, but without
introducing variability and with = 200 GPa,H = 10 GPa, andr, = 250 MPa. Each steel rebar is
represented by one steel fiber.

Figure[® shows the displacement time-history of the freeaétide cantilever beam for three simulations
of the same beam model but with different variance paranwttire lognormal random field describ-
ing the spatial variability ot (x) ande, (x). In accordance with the better capability of the concrete
behavior law for dissipating energy even for low-amplituyeles already pointed out for the higher
variance in Figurg]3, one can see in Figure 5 that almostealintiparted energy is dissipated afters
whenr = 1.06. We recall that no dampinge-g.Rayleigh damping — has been added in the simulations.
This experiment shows that the stochastic constitutiveehdeveloped in this paper can represent the
structural effects of the material energy dissipation naai$ms.

5. CONCLUSIONS AND ONGOING WORK

For a single-degree-of-freedom elasto-plastic systerh liviear kinematic hardening, we have shown
here two illustrations of the capability of a heterogenemaglel of the yield stress to create patterns
classically associated to material viscous damping. Thaterns would otherwise be modeled through
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Figure 5: Single DOF RC cantilever beam dynamic responseanfibration: free-end displacement time-history.

either more advanced material constitutive models or &t@it damping models.g. Rayleigh damp-
ing, lacking physical basis. Although the underlying madelthe yield stress is stochastic, the simula-
tions and results are valid for each realization.

The main research prospect after this first illustratios iiiethe precise characterization of the stochastic
model based on the information from the micro-scale (suchgasegate size, granulometetc). In-
deed, at the scale considered, the variance in particidani® averaged variance of the interpolated ran-
dom field, which is different from the variance of a corresgliag micro-scale random field (Vanmarcke
et al. 1986). This will consist in choosing, based on rati@mguments, the type of first-order marginal
law and correlation model, as well as the value of the comedimg parameters (mean value, variance
parameter, and correlation length). This choice and stadidde performed in the context of stochastic
micro-meso scale transition (Soize 2008, Arnst & Ghanen82Qbttereau et al. 2011).
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