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SUMMARY:  
In recent years several tsunamis have hit coastal areas around the world. In some of these areas where small 
offshore islands were supposed to offer protection from wind and waves, communities were 
developed.  However, post-tsunami survey data has shown that in some cases the runup in these areas was 
significantly higher than in neighboring locations. Two dimensional numerical simulations using the Nonlinear 
Shallow Water Equations were employed in order to investigate this phenomenon. The experimental setup for 
the bathymetry consists of a conical island and a plane beach behind the island, while the incoming wave has a 
generalized solitary waveform. The problem geometry is dominated by five physical parameters, namely the 
island slope, the beach slope, the water depth, the distance between the island and the plane beach and the 
wavelength. In the present study we compare some linear regression-based approaches used in machine learning 
in combination with kernels that map nonlinear dependencies into higher dimensional linear ones, in order to 
best describe the runup amplification on the area of the beach behind the island with respect to the runup on a 
lateral location on the beach, not directly affected by the presence of the island. A notion of sequential 
experimental design is given and and we present some preliminary results. 
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1. INTRODUCTION 
 
During the last decade, the world has encountered the deadly consequences of two of the most severe 
tsunamis ever recorded, namely the December 2004 event in Indonesia (Liu et al. 2005; Titov et al. 
2005) and the most recent March 2011 Japanese tsunami. Of course the aforementioned catastrophes 
are not the only ones. There is a long list of such events dating back to the tsunami generated by the 
eruption of Santorini’s (Thera) volcano in 1600 BC. Increased public attention to tsunamis during the 
last decade has raised awareness and preparedness, which is the only effective countermeasure and has 
saved lives, like during the Chile March 2010 tsunami (Peachey 2010). 
 
Tsunami science has the role of better understanding the generation, propagation and runup of the 
killer waves and by doing so, tsunamologists should provide coastal communities early warnings and 
education. Since the 1950’s great advancement is observed in the study of tsunami runup on a plane 
beach, with memorable studies such as those by Carrier & Greenspan (1958), Keller & Keller (1964), 
Synolakis (1987), Tadepalli & Synolakis (1994), Brocchini & Peregrine (1996), Didenkulova & 
Pelinovsky (2008) and Antuono & Brocchini (2010). All of the aforementioned articles deal with the 
mathematical description of runup on plane beaches for several waveforms. The catastrophe in Babi 
island (Yeh et al. 1993, 1994) raised scientists’ attention on tsunami runup on islands and the studies 
that followed, with laboratory experiments (Briggs et al. 1994) as well as analytical models (Kanoglu 
& Synolakis 1998), showed that long waves may cause extensive runup on the lee side of the island. 
Before that, there were a few studies (Homma 1950, Longuet-Higgins 1967, Vastano & Reid 1967) 
that gave some insight into this phenomenon but never dealt with the runup calculation. What is made 
clear by the aforementioned studies is the fact that long waves do not behave like wind generated 



waves and that small islands that would act as natural barriers, transform into amplifiers of wave 
energy in areas believed to be protected and where coastal communities thrive.  
 
In recent years, the developments in computer science and the increase of computational power in 
combination with the smaller associated cost compared to laboratory experiments, has led scientists to 
more and more rely on numerical simulations. However, each numerical simulation has a 
computational cost, which increases with model complexity and spatiotemporal resolution. Therefore, 
a series of experiments that have a specific objective, such as maximization/minimization of an output, 
should be carefully designed in order to reach the desired conclusion with the least number of 
experiments. Thus, finding the argmaxx f(x) where f(x) is the output of the experiment depending on 
the inputs x, is not trivial  since we do not know the analytical expression of f(x) and therefore it 
should be approximated iteratively. For this reason, machine learning algorithms can be applied in 
order to build a statistical model 𝑓 𝑥  of the experiment which will improve at each step until it 
reaches a point where it can confidentially model the experiment. Building such a statistical model 
(emulator) has further advantages, the most important one being the ability to use it instead of the 
actual simulator since it is much less computationally demanding to evaluate and thus can be applied 
very rapidly, especially in cases where someone needs a quick forecast. Moreover, an emulator can 
clarify the relations between the several inputs and the model output. Recently, Sarri et al. (2012) 
developed an emulator for landslide-generated tsunamis based on the theoretical model of Sammarco 
& Renzi (2008). 
 
The present study aims to elucidate the tsunami runup amplification on a plane beach behind a small 
conical island with respect to an adjacent lateral point on the beach not directly influenced by the 
presence of the island. This is achieved with the use of numerical simulations of the Nonlinear 
Shallow Water Equations. In addition, several regression type emulators in combination with kernels 
are built and compared. A notion of sequential experimental design is given and some preliminary 
results are presented. 
 
 
2. SETUP AND NUMERICAL SIMULATIONS 
 
The numerical simulations where performed using VOLNA (Dutykh et al. 2011), which solves the 
Nonlinear Shallow Water Equations. VOLNA can handle the whole life cycle of a tsunami from the 
generation to the run-up. VOLNA uses a Finite Volume Characteristic Flux scheme with a MUSCL 
type of reconstruction for higher order terms (Kolgan 1972, 1975) and a third order Runge-Kutta time 
discretization. The code uses an unstructured triangular mesh, which can handle arbitrary bathymetric 
profiles and can also be refined in areas of interest. The mesh resolution that we used varied from 
500m at the seaward boundary to 2m at the areas where we measured runup (Fig. 2.1.).  
 

 
   

Figure 2.1. The unstructured triangular grid. Colours represent the bathymetry 



 
The bathymetry consists of a conical island sitting on a flat bottom and a plane beach behind the 
island. The height of the crest of the island above still water level is always fixed at 100m. The 
distance between the seaward boundary and the toe of the island is also fixed at 7600m. A single wave 
profile is prescribed as forcing at the seaward boundary, having the form 𝜂! 𝑡 =   1.5  𝑠𝑒𝑐ℎ! 𝜔𝑡 −
2.6  . We use this formulation because we want to avoid the solitary wave link between the water 
depth and the wave amplitude as is discussed in Madsen et al. (2008) and in Madsen & Schäffer 
(2010). The problem is governed by 5 physical variables (Fig. 2.2. & Table 2.1.), namely the island 
slope, the plane beach slope, the water depth, the distance between the island and the beach and the 
prescribed incident wavelength which is controlled by 𝜔. 

 

 
 

Figure 2.2. Schematic of the problem geometry and the governing physical parameters. 
 

Table 2.1. Physical variable ranges 
is 0.05 – 0.2 
bs 0.05 – 0.2 
d 0 – 5000m 
h 100 – 1000m 
ω 0.01 – 0.1 rad/s 

 
The runup was measured on the beach exactly behind the island and on a lateral location on the beach, 
which was not directly affected by the presence of the island. The runup measurements were made 
with the aid of 11 equally spaced virtual wave gauges at each location. The actual horizontal spacing 
of the wave gauges was dependent on the beach slope. The minimum height of the gauges was the still 
water level and the maximum height was selected to be 5.5m above the undisturbed water surface. The 
runup never exceeded this height in any of the simulations. The maximum runup is defined as the 
maximum recorded waveheight at the highest wave gauge. When the wave did not reach the height of 
a gauge, then that gauge did not record any signal. Two sample gauge recordings are shown in Fig 2.3.  
 

 
 
Figure 2.3. Sample wave gauge recordings for the same event. The left is from a gauge positioned at the still 
water level, while the right is positioned 3.25m above the water surface. 



 
In order to fill the input parameter space we need to choose the input points in such a way that 
maximal information is obtained with a moderate number of points. For this reason, we used a Latin 
Hypercube Sampling (McKay et al. 1979) with maximization of the minimum distance between 
points. When using the Latin Hypercube Sampling (LHS) of a function of M variables, the range of 
each variable is divided into N equally probable, non-overlapping intervals. Then one value from each 
interval is randomly selected for every variable. Finally, a random combination of N values for M 
variables is formed. The maximization of the minimum distance between points is added as an extra 
constraint. The LHS is found to lead to better predictions than regular grids when used with 
multivariate emulators (Urban & Fricker 2010). However, here we have the choice to either randomly 
or smartly select points in the LHS. The smart selection of points is the subject of the sequential 
experimental design discussed in Section 5. In order to accurately cover the input space, we ran 200 
simulations.  
 
 
3. STATISTICAL MODEL 
 
The statistical model will be used as an emulator of the numerical code having as input the M-
dimensional vector of the physical variables and as output the scalar value of the runup amplification. 
In statistics, regression analysis refers to techniques for modeling the functional relationship between 
an output and one or more input variables. We are focusing on a statistical model such as Y = f(X) + ε, 
where X is a matrix containing the input variables and Y is a vector containing the outputs. ε is the 
perturbation or “noise”, a real random variable, independent of X, which follows the normal 
distribution rule ε   ∼ N 0,𝜎!  𝐼! . The performance of these regression models in practice depends on 
the form of the data considered, and how it relates to the regression approach being used. For the 
description of the runup amplification problem we tested and compared three different statistical 
models.  
 
3.1. Ridge Regression 
 
All of them have as a base the ridge regression, which is a regularized linear regression and is more 
robust than the classic linear regression since it allows for non-singular inverted input matrices. Since 
ridge regression is a linear model, f(X) = Χβ, where X is the design matrix with size 𝑁×𝑀, with N 
being the sample size and M the dimension of the problem (number of input variables). Therefore, one 
has to find the optimal 𝛽  that minimizes the lest squares error: 
 

𝛽  (𝜆) =   𝑎𝑟𝑔𝑚𝑖𝑛! ∥ 𝑌 − 𝛸𝛽 ∥!+ 𝜆 ∥ 𝛽 ∥!                                                              (3.1) 
 
where λ  is the penalty coefficient. When λ = 0 the above becomes a standard linear regression. The 
solution to the above equation is: 
 

𝛽   𝜆 =    (𝑋!𝑋 + 𝜆𝐼)!!  𝑋!𝑌                                                                                      (3.2) 
 
where I is the 𝑀×𝑀 identity matrix. The aim of the ridge regression is to be functional without any 
condition on 𝑋!𝑋. 
 
3.2. Learning, Validation and Test 
 
One classical technique in Statistics is to partition a sample of data into complementary subsets: 
performing the parameter (β) estimation on one subset (called the training set), validating the 
smoothing parameter (λ) on another subset (called the validation set), and testing the whole model on 
the last subset (called the testing set). The most commonly used partition of the initial data set is 60%-
20%-20% corresponding to each of the previously mentioned subsets, respectively. The procedure is 
the following: 



–  We start computing 𝛽  over Xtrain and Ytrain. This process optimizes the model parameters to make the 
model fit the training data as well as possible.  

–  Then we validate λ by looking at the smallest error over Xvalid and Yvalid. 
(The previous two procedures are followed for each regression model respectively)  
–  Finally, we compute the mean error over Xtest and Ytest to compare the models.  
 
Sometimes, when we do not possess enough data, the validation and the test are inconsistent. A 
solution is to mix the base enough, so that each data point has been in both validation and testing sets, 
and to average the errors. This procedure is called cross-validation. There exist several types of cross-
validation, two of them being the:  
–  k-fold cross-validation: The original sample is partitioned into k subsamples. Then 60% of the k 

subsamples are retained as the training data, 20% as the validation data and 20% as the test data. 
We repeat the cross-validation k times in order for each of the k subsamples to be used exactly 
once as the validation and the test data. The advantage of this method over repeated random sub-
sampling is that all observations are used for training, validation and test.  

–  Leave-one-out cross-validation: This cross-validation retains only a single observation for the 
validation data and a single observation for the test data. All the remaining observations are the 
training data. Therefore we repeat the leave-one-out cross-validation, as many times as the 
number of observations, which may be expensive from a computational point of view. However, 
this type of cross-validation could be proved useful when the number of observations is limited.  

 
3.3. Nonlinear Model: Kernelized Ridge Regression 
 
Because ridge regression is linear, a way to deal with nonlinear dependencies between the input 
variables is to use kernels. The Kernel trick (Cristianini & Shawe-Taylor 2000) is a way of mapping 
observations from a general input space into a high dimensional feature space, in the hope that the 
observations will gain meaningful linear structure in the feature space. The trick is to use learning 
algorithms that only require dot products between the vectors in the feature space in order to avoid the 
explicit mapping, and choose the mapping such that these high-dimensional dot products can be 
computed within the original space, by means of a kernel function K(.,.) : 
 

𝐾 𝑥!  , 𝑥! =   𝜑 𝑥! !   𝜑 𝑥!                                                                                        (3.3) 
 
where 𝜑 ∶   ℝ! →   ℝ! and Q is the dimension of the feature space, which can go to infinity. Thus the 
new regression model becomes 
 

𝑓 𝑥 =   𝑤!𝜑 𝑥   .                                                                                                      (3.4) 
 

Now set the change of parameters  
 

𝑤 = 𝛷!𝛽,            where        𝛷 = (𝜑 𝑋! ,… ,𝜑 𝑋! )                                                          (3.5) 
 
and then the form of the regression model is the following : 
 

𝑓 𝑥 =    𝛽  𝛫(𝑥,𝑋!!
!!! )                                                                                              (3.6) 

 
Τhe parameter β is estimated by the ridge regression solution as 
 

𝛽 =    (𝛫 + 𝜆𝛪)!!𝑌                                                                                                       (3.7) 
 
We can use several types of kernels, the efficiency of which depends on the form of the data. For the 
current study we tested the following two types: 
 
- Polynomial Kernels of the form K(X,𝑋′)   = (𝑋!𝑋′)!, where d is the degree of the polynomial.  



- Gaussian Kernels of the form K X,𝑋′ = exp ∥!!!!∥!

!!
 

A validation may be performed to define the optimal degree of the polynomial kernel or the optimal 
standard deviation σ of the Gaussian kernel. 
 
 
4. RUNUP AMPLIFICATION 
 
After running 200 simulations with the input variables in the intervals presented in Table 2.1, the 
runup amplification on the plane beach behind the island with respect to a lateral point on the beach, 
for which the influence of the island was minimal, was found to be 1 < AR < 1.69 (Fig. 4.1.). The fact 
that the runup amplification is always greater than one clearly indicates that the island cannot offer any 
kind of protection from tsunamis. On the contrary, the energy of the tsunami is focused on the lee side 
of the island leading to increased runup and consequently inundation on the area of the plane beach 
directly behind the island. 
 

Table 4.1. Mean Square Error for each type of model and cross-validation 
 
 
 
 
 
 

 
 

Figure 4.1. Histogram of the runup amplification on the point of the plane beach directly behind the island. 
 

We built three emulators, namely a bare ridge regression, a ridge regression with a polynomial kernel 
and a ridge regression with a Gaussian kernel. By comparing the mean square error of all three of 
them in the testing set we found that the best performing model is the ridge regression with the 
Gaussian kernel (Table 4.1.). The use of kernels improves the performance of the problem by an order 
of magnitude. This implies that the runup amplification problem is highly nonlinear. The maximum 
runup amplification predicted on the whole sample by the best performing emulator is AR = 1.641.  
 
 
5. SEQUENTIAL EXPERIMENTAL DESIGN 
 
Running a large number of simulations without any “guidance” in order to find the combination of 
values of the input variables that maximizes a scalar output might be computationally expensive and 

Method / Cross-Validation 5 - fold Leave-One-Out 
Without Kernel 0.0988 0.1198 

Polynomial Kernel 0.0086 0.0164 
Gaussian Kernel 0.0081 0.0148 



inefficient. One needs to learn from each simulation that he runs and use this knowledge to guide him 
to the desired output with the least number of experiments. This is the aim of the sequential 
experimental design. At each step the extra information gathered by each experiment refines the 
statistical model. We use this emulator to predict which unlabelled point will bring us more 
information, according to our criteria, and therefore we should examine next. 
 

 
  

Figure 5.1. Average number of total maximal points discovered at each iteration, when q = 10. 
 
We started by randomly selecting 20 points and we used as a model the ridge regression with the 
Gaussian kernel. Then, by using this emulator, we made predictions on the remaining 180 points and 
afterwards we selected to examine the q points that gave the highest prediction. The parameters λ and 
σ of the model can be selected at each step by cross-validation. The same procedure can be repeated 
until all simulations are ran. One should provide a stopping criterion, but we leave that for a future 
study. In Fig. 5.1. we present the mean over 64 random initializations of the total number of maximal 
points we have discovered at each iteration when q = 10. By n maximal points we mean the n points 
with the highest runup amplification. In the same plot we can observe that the maximum can be 
discovered after 60 experiments, while for the 32 higher runup amplifications we need 130 
experiments. The step size q does not affect the speed of convergence, as can be seen in Fig. 5.2. 
where we plot the evolution of the mean squared error.  
 

 
 

Figure 5.2. The evolution of the mean squared error. 
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In Fig. 5.3. we plot the average over 128 random initializations of the number of maximal points 
discovered in each iteration. We can see that more points are found in the first iterations than in the 
subsequent ones. However, the n = 16 and n = 32 curves present a smaller peak around the 12th and the 
11th iteration respectively. This signifies the existence of a smaller, narrower regime of high runup 
amplification.  
 

 
 

Figure 5.3. Average number of maximal points discovered in each iteration. 
 
 

6. DISCUSSION 
 
In this study we ran 200 simulations in order to see the effect of a small conical island in the vicinity 
of a plane beach on the tsunami runup on the beach behind the island. We observed that the island 
always causes amplification to the runup on the beach behind it, when compared to another point on 
the beach, which is not affected by the presence of the island. Therefore, coastal communities built 
behind small offshore islands should be informed that in the case of a tsunami, the island will not offer 
any protection, but on the contrary, it will amplify the runup. The situation may become even worse if 
resonant wave interactions occur (Stefanakis et al. 2011). Three different emulators based on ridge 
regression were built and the best performing model was found to involve Gaussian kernels, which 
signifies that there are nonlinear relations between the input variables and the runup amplification. 
Other statistical models, such as trees, should also be applied and compared. The advantage of trees is 
that their results are easily interpretable. We also implemented a sequential experimental design that 
allows us to find the maximum output with significantly less number of simulations. However, the 
experimental design was applied after the total number of simulations was conducted and the results of 
this technique were compared with a prior knowledge of the maximum. Hence, it is important to find a 
stopping criterion, which can be applied without knowing a priori the behaviour of the function at all 
the points. Moreover, in this study we only looked at the runup amplification, whereas an improved 
approach would be to look at both the actual value of the runup and the runup amplification, which 
would transform the statistical problem to multivariate optimization. Last but not least, future research 
on the subject should take into account both physical and numerical variables such as grid size, CFL 
condition and wave gauge spacing. 
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