
Depolarization and Modified Conversions of Seismic 

 

Waves by Site-City Effects : A Theoretical Model 

Paper Title Line 3 
Blank line 11 pt 

Blank line 11 pt 

L. Schwan & C. Boutin     
Université de Lyon  

École Nationale des Travaux Publics de l’État, 69518 Vaulx-en-Velin Cedex, France 

Département Génie Civil et Bâtiment,  FRE CNRS 3237,  

Email : {logan.schwan ,claude.boutin}@entpe.fr 

 

 

SUMMARY: (10 pt) 

This article is devoted to the propagation of obliquely-incident homogeneous elastic waves in presence of a city 

resting on a homogeneous half-space. The city is modeled as a periodic distribution of oscillators which overall 

behavior was reduced with the homogenization method into a frequency-dependant surface impedance by Boutin 

and Roussillon (2006). It is hereby shown that soil-city interactions during oscillators' resonance lead to the 

apparent stiffening of the surface that induce around the oscillators' eigen-frequency (i) a reduction of conversion 

between P and SV waves ; (ii) the depolarization of normally-incident shear waves ; (iii) the conversion between 

SH waves and P and SV waves. Soil-city interactions also result in an apparent radiative damping for the 

resonators associated to the emission of waves by the oscillators in the soil.  
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1. INTRODUCTION 
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Seismic engineering practice usually considers that the ground motion only results from the seismic 

source and the feature of the substratum; it disregards the densely urbanized surroundings. However, 

some observations made during the 1985 Michoacan earthquake, such as beatings and long codas, 

remained unexplained even using 3D refined models (Chavez-Garcia and Bard, 1994). This led 

Wirgin and Bard (Wirgin and Bard, 1996) to suggest that ground motion could also result from 

structure-soil-structure interactions with the “sur-stratum” made up by the city. Calculations based on 

several methods (Clouteau and Aubry, 2001; Guéguen et al., 2002; Tsogka and Wirgin, 2003), 

supported the idea that for specific situations, global city-scale soil-structure interactions can occur: 

the so-called Site-City effect can be significant. But what are the signatures of these global interactions 

on the seismic waves and what are their consequences on the dynamics of the buildings? 
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The problem is treated analytically considering two simple observations: (i) the dynamical soil-

structure interactions occur because the seismic frequency range matches the eigenfrequencies of the 

buildings; (ii) urban landscapes often look like grids with similar buildings among large districts. 

These observations lead to consider the city during a seismic event as (i) a resonant surface with (ii) a 

periodic distribution of resonators.  
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Provided that the period is much smaller than the wavelength in the soil, Boutin and Roussillon 

(Boutin and Roussillon, 2004; Boutin and Roussillon, 2006) homogenized the boundary layer of the 

local fields emitted by the resonators and reduced the macroscopic behaviour of the city into a 

frequency-dependant surface impedance depending on the dynamic of the oscillators.  

Blank line 11 pt 

The physical principles leading to the macroscopic surface impedance are presented in the first part of 

the paper. In the following parts, its effects on the polarization and the conversions of elastic waves 

are exposed.  
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2. FROM THE HOMOGENIZATION OF THE RESONANT SURFACE TO ITS 

MACROSCOPIC IMPEDANCE   
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2.1. Statement of the problem 
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The study focuses on the propagation of harmonic elastic waves in a linear, elastic, isotropic, 

homogeneous half-space on which lies a resonant surface. The half-space is characterised by its 

density ρ and its Lamé coefficients λ and μ. The resonant surface is viewed as the infinite periodic 

repetition of the same representative surface element Σ. Along the whole paper, we assume that only 

one oscillator stands on the period and that it oscillates only in the horizontal direction eo with one 

degree of freedom (see Fig. 2.1).  
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The reflection of elastic waves on the border between two media is usually analysed comparing the 

impedances of the media on each side of the border. As well, the macroscopic impedance ZO of the 

resonant surface is established and then compared to the impedance of the homogeneous half-space for 

shear waves  ZS=(ρμ)
1/2

. The reflecting waves generate a surface displacement that sets the oscillators 

in motion. While oscillating, they exert on the surface a distribution of local stresses. Assuming the 

distance between the oscillators is small before the wavelength Λ (hypothesis of scale separation) this 

distribution is seen by the waves as a homogeneous distribution of stress at the leading order. The 

surface impedance ZO is defined as the ratio between this macroscopic stress and the surface velocity. 
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The macroscopic surface impedance ZO is therefore established in two steps: firstly, the macroscopic 

stress imposed by the resonant surface is expressed by the homogenization method as a function of the 

local stresses exerted by the oscillator on the period; secondly, the equation of motion of the oscillator 

links these local stresses to the surface displacement that set the oscillator in motion.  
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Figure 2.1 Elastic half-space loaded by periodic distribution of horizontal one-degree-of-freedom-oscillators 
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2.2. Homogenization of the stresses exerted on the surface by the oscillators 
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The key of the homogenization process is the geometric hypothesis of “scale separation”: it is assumed 

that the length ℓ of the period Σ is small compared to the wavelength Λ of the incident wave. This 

condition is quantified by the scale ratio ε=2πℓ/Λ<<1. Denoting ω the pulsation and cS=(μ/ρ)
 1/2

 the 

shear waves velocity, the scale separation means that the phase difference ε=ℓω/cS of the incident 

wave over the length ℓ is small before 1 : neighbouring resonators oscillate in phase. 
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Under this scale separation condition, the dynamic has two scales: far from the surface, the waves 

propagate as macroscopic fields σ(x) and u(x) which fluctuate over a characteristic length Λ; in the 

vicinity of the surface, the oscillators emit Σ-periodic fields σ*(x,y) and u*(x,y) located in a boundary 

layer. The local stresses τ exerted by the oscillators on the surface are balanced by both macroscopic 

fields and boundary layer fields (see Fig. 2.1). 



Following the homogenization process, the macroscopic fields are described by the macroscopic space 

variable x while boundary layer fields are furthermore described by the microscopic space variable 

y=ε
 -1

x adapted to their characteristic length of variation ℓ<< Λ. That leads to modify the differential 

operators so that they take account of the local perturbation at the macroscopic scale. The stresses and 

displacements are then expanded in powers of ε and reported in the balance of the surface, the 

boundary layer and the half-space. The balances are successively solved for each power of ε. 
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At the leading order, the resonant surface exerts the macroscopic stress <τ>, which is the average of 

the local stresses τ exerted by the oscillator on one period while set in motion by the waves.  
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 (2.1) 
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2.3. The macroscopic impedance of the resonant surface 
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In this paper we consider one-degree-of-freedom resonators that oscillate in the horizontal direction eo 

only. While set in motion by the waves they exert the stress τ on the surface in the resonant direction 

eo and do not exert stresses in any other direction.  
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In the resonant direction eo the force |Σ|<τ> undergone by the period Σ at the leading order is balanced 

by the force -mω
2
 Um undergone by the mass m of the oscillator on the period. The surface impedance 

ZO in the resonant direction eo is defined as the ratio between <τ> and the surface velocity –iωUΓ:  
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 (2.2) 
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Besides, the displacement Um of the mass of the oscillator is linked to the surface displacement UΓ by 

the equation of motion of the weakly-damped oscillator. Denoting ωo the eigen-pulsation of the 

oscillator and ξ<<1 its damping, the equation of motion leads to the dynamical response function  
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 (2.3) 
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As a result, the ratio between the surface impedance ZO and the impedance of the media beneath ZS is 

made up of a parameter η and of a dynamical function: 
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 (2.4) 
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The parameter η is made up of two terms: the first one εo=ℓωo/cS is the scale ratio evaluated at the 

eigen pulsation ωo of the oscillator. For the resonance to occur in the pulsation range of the scale 

separation, εo is small before 1. The second term in η is the ratio between the mass m of the oscillator 

and the mass MΣ=ρ|Σ|ℓ of the medium under one period Σ on a depth ℓ (the characteristic size of Σ). As 

a consequence, the parameter η is at best of the first order (in εo) if the resonating mass m is of the 

same order as the mass of soil MΣ. Keeping in mind the order of magnitude of η, we can find the 

asymptotic dynamical behaviours of the ratio of impedance ZO/ZS and estimate the analogous surface 

conditions imposed by the oscillators to the waves for a given pulsation (see Fig. 2.2).  
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In quasi-static (ω<<ωo) or inertial (ω>>ωo) regime, the limits of the dynamical function lead to a 

surface impedance ZO much smaller than the impedance of the medium ZS: this contrast of impedances 

is analogous to a free surface condition. 
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 (2.5) 



But at the resonance of the weakly-damped oscillator (ω=ωo) the ratio of impedances tends to -η/2ξ. 
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If the oscillators are perfectly elastic (ξ=0), the ratio of impedances ZO/ZS becomes infinite: this 

contrast of impedances is analogous to a rigid condition. Note that the resonance of the oscillators 

leads to the apparent “stiffening” of the surface in the direction of the oscillations only. Hence, 

anisotropic resonators which have different eigen pulsations in the different directions lead to 

anisotropic surface conditions: apparently free in the directions in quasi-static or inertial regime, 

apparently stiffened in the directions of resonance. 
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In the case of weakly-damped oscillators, the ratio η/2ξ must not be small before 1 for the site-city 

effect to be significant at the resonance under the scale separation condition. That happens if the 

resonating mass m is at least of the same order as the mass MΣ=ρ|Σ|ℓ of the medium under one period Σ 

on a depth ℓ. For numerical applications, we will use η=2ξ=10% which stands for a dense urban area 

built on soft soil.  
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Figure 2.2 Ratio between the surface impedance ZO in the resonant direction and the impedance ZS of 

the medium for shear waves. Calculations performed with η=10% and 2ξ=0% or 10% 
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3. INCIDENT WAVES POLARIZED IN THE RESONANT DIRECTION: THE CASE OF 

THE HORIZONTALLY-ISOTROPIC RESONANT SURFACE 
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In this section, we study the propagation of elastic waves which horizontal displacement is polarized 

in the resonant direction eo. These results are also applicable if the resonators have the same dynamical 

behavior in both the horizontal direction eo and e2 and the waves have any horizontal polarization: this 

section is devoted to horizontally-isotropic resonant surfaces.  
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3.1 Structural damping versus apparent radiative damping: illustration in the case of SH waves 
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Let us consider a shear wave in incidence on the surface with an angle θS and which amplitude Ui is 

polarized in the resonant direction as shown in Fig. 3.1. It gives rise to a reflected wave with respect to 

the Descartes’ relation; we note Ur its amplitude. The stress generated by the waves at the surface must 

equal the stress exerted by the oscillators set in motion: it leads to the coefficient of reflection 
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 (3.1) 



The surface displacement UΓ in the resonant direction is the sum of the incident and the reflected 

displacements UΓ=Ui+RUi and the oscillators’ displacement Um is given by Eqn. 2.3 
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 (3.2a) 

 (3.2b) 
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The coupled system behaves with the apparent damping 2ζ and the apparent eigen-pulsation Ωo. As 

shown in Fig. 3.1, the surface displacement UΓ is twice the incident displacement Ui when the 

oscillators are quasi-static (ω<<ωo) or in inertial regime (ω>>ωo). This situation is analogous to a free 

surface condition and is coherent with the contrast of impedances ZO/ZS <<1 (see Eqn. 2.5).  
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At the resonance ω=ωo of perfectly elastic oscillators (ξ=0) the surface does not move (UΓ=0): this 

situation is analogous to a rigid surface condition and is coherent with the contrast of impedances 

ZO/ZS=∞ (see Fig. 2.2). However, the oscillators’ displacement Um is finite at the resonance even 

though they are perfectly elastic. The Eqn. 3.2 show that they behave as damped oscillators with an 

apparent damping η/2cosθS. The system being non-dissipative, the energy lost by the oscillators is 

gained by the half-space: this apparent damping is due to the emission of waves by the oscillators.  
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In the case of weakly-damped oscillators, the finite contrast of impedances ZO/ZS= -η/2ξ ≠∞ at the 

resonance leads to the surface displacement 4ξcosθS/η ≠0 for a unitary incident wave: the surface 

condition is no longer analogous to a rigid surface condition but the surface is apparently “stiffened”. 
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Figure 3.1 Surface displacement (top) and oscillators’ displacement (bottom) in the resonant direction 

for a unitary incident SH wave polarized along the resonant direction.  

Calculations performed with η=10% and 2ξ = 0% or 10% 
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To conclude this paragraph, let us make two remarks. Firstly, the contrast of impedances ZO/ZS= -η/2ξ 

at the resonance shows a competition between the structural damping 2ξ and the apparent radiative 

damping η: isolating the oscillators, the ratio η/2ξ indicates if the energy is preferentially structurally-

lost or turned back into waves, keeping in mind that the apparent radiative damping η depends on the 

scale separation and the ratio between the resonating mass m and the mass MΣ=ρ|Σ|ℓ of the medium 

(see Eqn. 2.4). Secondly, note that no reflected wave is produced in the very particular case η=2ξcosθS 

(R=0 in Eqn. 3.1): the incident energy stays in the resonant surface for these parameters.  
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3.2 Modified conversion of incident P waves 
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Let us consider one incident P wave which incident plane contains the resonant direction eo of the 

oscillators (see Fig. 3.4). It generates displacements in the non-resonant vertical direction e3 and in the 

horizontal resonant direction eo. As a result, the oscillators impose a stress-free condition along e3 and 

the dynamical stress < τ > along eo. No out of plane stresses are imposed: reflected P and SV waves 

are sufficient to fulfill these surface conditions. 
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Figure 3.4 Reflection of SV and P waves which incident plane contains the resonant direction eo 
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In quasi-static and inertial regimes, the surface condition is analogous to a free surface condition: for 

some incident angles θP the amplitude of the SV wave is greater than the amplitude of the reflected P 

wave (see Fig. 3.5 in the case of the static resonant surface ω=0). The incident P wave is substantially 

converted into a reflected SV wave (the conversion depends on the Poisson’s ratio ν) 
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At the resonance of perfectly elastic oscillators (ξ=0) the surface condition is analogous to the mixed 

condition: free in the vertical non-resonant direction e3 and rigid in the resonant direction eo. To fulfill 

this surface condition, one reflected P wave is sufficient: the incident P wave is no longer converted 

into a SV wave (see Fig. 3.5 in the case ω=1 and η/2ξ=∞). 
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At the resonance of weakly damped oscillators, the incident P wave gives rise to both P and SV waves 

but the P wave is amplified (compared to the quasi-static and inertial regimes) and the SV wave is 

attenuated. As a result, the modulus of the SV wave remains smaller than the modulus of the reflected 

P wave (see Fig. 3.5 in the case ω=1 and η/2ξ=1). 
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Figure 3.5 Modulus of the coefficient of reflection in the case of an incident P wave which incident plane 

contains the resonant direction eo. Calculations performed with ν =1/3, η=10% and 2ξ=0% or 10% 
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3.3 Modified conversion of incident SV waves 
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Let us consider one incident SV wave which incident plane contains the resonant direction eo of the 

oscillators (see Fig. 3.4). As for an incident P wave, no out of plane stresses are imposed by the 

oscillators at the surface and reflected P and SV waves are sufficient to fulfill the surface conditions.  
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In quasi-static and inertial regimes, the surface condition is analogous to a free surface condition: there 

exists a critical incident angle (π/6 for a Poisson’s ratio ν =1/3) beyond which the P wave becomes 

inhomogeneous (Descartes’ relation). Moreover, depending on the Poisson’s ratio, the incident SV 

wave is converted into a P wave which can have an amplitude greater than the reflected SV wave (see 

Fig. 3.6 in the case of the static resonant surface ω=0). 
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At the resonance of perfectly elastic oscillators (ξ=0) the surface condition is analogous to a vertically-

free and horizontally-rigid condition. To fulfill this surface condition, one reflected SV wave is 

sufficient: the incident SV wave is no longer converted into a P wave (see Fig. 3.6 in the case ω=1 and 

η/2ξ=∞). 
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At the resonance of weakly damped oscillators, the conversion is less important than in quasi-static or 

inertial regimes (see Fig. 3.6 in the case ω=1 and η/2ξ=1). Note that for quasi-normal incident waves, 

the reflected SV wave can be substantially attenuated at the resonance, depending on the ratio η/2ξ. In 

the very particular case η/2ξ=1, no normal shear waves is reflected at the resonance (R=0 in Eqn. 3.1). 
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Figure 3.6 Modulus of the coefficient of reflection in the case of an incident SV wave which incident plane 

contains the resonant direction eo. Calculations performed with ν =1/3, η=10% and 2ξ=0% or 10% 
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4. INCIDENT WAVES POLARIZED OUT OF THE RESONANT DIRECTION: THE CASE 

OF HORIZONTALLY-ANISOTROPIC RESONANT SURFACES 
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4.1 Depolarization of normally-incident shear wave 
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Let us consider a normally-incident shear wave which polarization makes an angle α with the resonant 

direction eo(see Fig. 4.1). Its displacement is projected on eo and on the non-resonant direction e2. The 

component cosα along eo is reflected with the coefficient of reflection R given in equation Eqn. 3.1 

with θS=0 and represented in Fig. 4.2; the component sinα along the non-resonant direction e2 is 

reflected in phase as under a free surface condition. The displacement of the reflected wave reads 
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 (4.1) 
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Figure 4.1 Depolarization of a normally-incident shear wave which polarization makes an angle α with the 

resonant direction eo in the case of perfectly elastic oscillators (η/2ξ=∞) and damped oscillators (η/2ξ=1) at the 

resonance. Grey arrows are the incident wave. The polarization of the reflected waves is in black: the arrow 

gives the orientation of the polarization when the incident wave is at its maximum.  

Calculations performed with η=10% and 2ξ=0% or 10% 
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In the case of perfectly elastic oscillators, the modulus of R remains unitary but its argument varies 

from 0 to 2π (see Fig. 4.2): the reflected wave is depolarized. At the resonance the component of the 

reflected wave in the resonant direction eo is opposed to the component of the incident wave along eo 

(arg R= π at the resonance); meanwhile their components in the non-resonant direction e2 are equal. 

For α=π/4, the reflected wave is therefore perpendicular to the incident wave (see Fig. 4.1). 
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At the resonance of weakly-damped oscillators, the depolarization is less marked as the contrast of 

impedance ZO/ZS between the resonant surface and the half-space is no longer infinite but equal to 

η/2ξ. In the very particular case η=2ξ, the coefficient of reflexion R along the resonant direction 

vanishes at the resonance (see Fig. 4.2): the reflected wave is totally polarized along the non-resonant 

direction (see Fig. 4.1). 
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Figure 4.2 Coefficient of reflection R of a normally-incident shear wave polarized in the resonant direction. 

Calculations performed with η=10% and 2ξ=0% or 10% 



4.2 Conversion of SH into SV and P waves 
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Let us consider an incident SH wave which polarization makes an angle α with the resonant direction 

eo and incoming with the angle θS (see Fig. 4.3).  
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Figure 4.3 SH wave which polarisation makes an angle α with the resonant direction eo 

and incoming with an incidence θS 
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In quasi-static and inertial regimes, the surface condition is analogous to a free surface condition: the 

incident SH wave gives rise to one SH wave only as the stresses generated at the surface by the waves 

are along the direction of polarization and compensate.   
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At the resonance, the component cosα of the incident wave in the resonant direction set the oscillators 

in motion, which impose stresses in the resonant direction eo. One reflected SH wave cannot 

compensate in the same time the stresses generated by the oscillators along eo and the stresses 

generated by the incident wave in the non-resonant direction e2: P and SV waves have to be involved 

(see Fig. 4.4). The vertical stress created at the surface by the SV and P waves will balance one 

another to fulfill the vertically-free condition. And the three reflected waves will balance one another 

to fulfill the horizontal conditions: the incident SH wave is converted into P and SV waves.  
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Figure 4.4 Modulus of the coefficients of reflection at the resonance of the oscillators 

for a θS-incident SH wave which polarization makes an angle α with the resonant direction eo. 

Calculations performed with ν =1/3, η=10% and 2ξ=0% or 10% 

 



Reciprocally, incident SV or P waves which incident plane makes an angle with the resonant direction 

set the oscillators in motion which impose out-of-plane stresses. Incident SV or P waves give rise to 

one reflected SH wave to compensate the out-of-plane stresses.  

Blank line 11 pt 

Blank line 11 pt 

5.  CONCLUSION 
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Providing a scale separation between the length and the distance between buildings, the periodic 

model of the city can be homogenized. At low and high pulsations, the surface condition is analogous 

to a free surface. But the resonance of the buildings leads to the apparent stiffening of the surface in 

the resonating direction only. Anisotropic resonators enable us to build in a practical way anisotropic 

surfaces, free in the non-resonant directions while apparent stiffened in the resonant direction.  
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It has been shown that an isotropic resonant surface leads to (i) the attenuation of the displacements of 

both the surface and the resonators around the eigen-frequency of the oscillator ; (ii) the modification 

of the conversions between P and SV waves. Besides, an anisotropic resonant surface leads to (i) the 

depolarization of horizontal shear waves ; (ii) a conversion between SH waves and SV and P waves.  
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An analogous experimental program within the SERIES project is being conducted with a resonant 

surface made up of over thirty bending beams resting on a soft layer. The specimen is designed so that 

the oscillators' eigenfrequency matches the fundamental frequency of the layer. It shall validate the 

theoretical results in the case of normally-incident shear waves and show the attenuation of the 

displacement at the resonance and the depolarization effect.  
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As an opening, what have been done on homogeneous waves is applicable to surface waves. For 

example, consider a Rayleigh wave propagating in the resonant direction eo. Equalizing the stress 

generated by the P and SV inhomogeneous waves at the surface and the stress imposed by the 

oscillators while set in motion, the equation of dispersion will depend on the dynamical ratio between 

the surface impedance ZO and the medium impedance ZS. As a consequence, the velocity of the 

Rayleigh wave will depend on the pulsation resulting in the dispersion of the field. What is more, 

damped oscillators will attenuate the wave along its propagation, even though the medium is perfectly 

elastic.  
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