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SUMMARY:  
In this paper some physics and mathematics aspects of chaos are highlighted. In particular the effect of the 
appearance of fractional derivatives in the differential equations that model the dynamic behavior of oscillators is 
analyzed. This is determined by comparing the phase diagrams of classical damped oscillators (derivative of 
integer order), with fractional damped oscillator. So, information about the physical nature of chaos and some of 
the mathematical tools used is presented, in particular, fundamentals of fractional calculus and fractional 
differential equations is provided.  
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1. INTRODUCTION 
  
In this paper some physics and mathematics aspects of chaos are highlighted. In particular the effect of 
the appearance of fractional derivatives in the differential equations that model the dynamic behavior 
of oscillators is analyzed. This is determined by comparing the phase diagrams of classical damped 
oscillators (derivative of integer order), with fractional damped oscillator. So, information about the 
physical nature of chaos and some of the mathematical tools used is presented, in particular, 
fundamentals of fractional calculus and fractional differential equations is provided.  
 
Therefore in this paper dynamic systems modeled by ordinary and fractional differential equations are 
presented. It emphasizes the qualitative description of long-term recurring movements governed by 
nonlinear differential equations for which analytical solution is not feasible. Dissipative systems 
exhibit a typical initial transient behavior, after which the motion tends to a stable behavior, so 
solutions converge to attractors. The simplest attractor is an equilibrium point, secondly the periodic 
attractors, and the most recent are chaotic attractors, whose unexpected features have generated great 
interest, because perfectly deterministic systems characterized by nonlinear differential equations 
converge to these attractors. 
 
To understand the effect of the appearance of fractional derivatives in differential equations, graphical 
method is used in phase space, by which one can verify that despite the apparent randomness, 
topological characteristics are well defined (sometimes fractal) for different types of equations. A 
comparison is made of the behavior of three types of chaotic oscillators: a Duffing, Van der Pol and 
Chua oscillators. This is done in each case using different fractional derivatives (eg, orders of 0.2, 0.5). 
Finally some conclusions on the results, focused on its application in earthquake engineering, are 
presented. In particular it is worth noting that in chaotic systems, for a deterministic periodic input, the 
system can have a random-looking output, but with behavior patterns. 
  
2. FRACTIONAL CALCULUS 
 
The concept of fractional calculus is not new (Weisstein, 2007). It is a generalization of the 



differentiation and the integration (of entire order) to not entire orders (fractional, real and even 
complex). Various mathematicians have contributed in this theme. Among them Liouville, Riemann, 
and Weyl did important contributions to the theory of the fractional calculus. The developments in this 
matter culminated in two fractional calculus owed at work of Riemann and Liouville (RL) on the one 
hand and on the other hand in the work of Grunwald and Letnikov (GL); both formulations are 
connected.  The expression of Grunwald and Letnikov is:   
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and the expression of Riemann and Liouville is:   
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It can be told that, the fractional calculus is based on the fractional integral definition given by 
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Where ( )νΓ  it is the gamma function, defined as an extension of the factorial function (where ν  is 
entire), in which ν  is generalized to complex and real numbers. 
 
2.1 Fractional  derivative 
 
The fractional derivative of order 0>µ   (if exists) can be defined in terms of the fractional integral 
as:   
 

( ) ( ) ( )[ ]tfDDtfD mm µµ −−=  (2.4) 
 
Where m  is an integer number. 
 
3. FRACTIONAL DIFFERENTIAL EQUATIONS 
 
In these equations, the order of the derivatives is fractionary, and therefore appear in it fractional 
terms. Like an example an equation of this type is presented and its solutions for different cases:   
 

[ ] ( ) 002 =++ tyDDD βα νν  (3.1) 
 
And its solutions are:   
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3.1 Fractionary finite differences 
 
Weighted average finite difference methods for solving fractional diffusion equations are discussed 
and different formulae of the discretization of the Riemann-Liouville derivative are considered 
(Magaña, 2008). The stability analysis of the different numerical schemes is carried out by means of a 
procedure close to the well-known von Neumann method of ordinary diffusion equations. The stability 
bounds are easily found and checked in some representative examples. 
 
4. GENERAL CONCEPTS OF THE CHAOS THEORY 
 
The chaos theory (Magaña, 2006) deals with the unpredictability and the predictability of the systems, 
even of the most unstable. The chaotic systems are not random, although they seem to be, and they 
possess the following characteristic that define them:  
 

• They are deterministic in the sense that an equation that governs its behavior exists. 
• They are very sensitive to the initial conditions, since a small change in the start point can cause a 

vastly different result, which makes them be unpredictably.  
• They are disordered and fortuitous, although certainly they are not, because under such a random 

behavior, there it exist some order sense and pattern. 
 
Accordingly, true random systems are not chaotic in the true sense because random implies 
nonexistence any relation between cause and effect for a given phenomenon. 
 
The chaos theory is plagued of strange attractors that produce a seemingly random and unpredictable 
behavior. For example, in meteorology you don’t know exactly what climatic pattern will exist within 
hundred days, but there are patterns that are likely to develop and others that are not. The group of 
possible patterns is known as attractor because it attracts toward itself the evolution of the system 
toward certain states and this concept is critical for the understanding of the chaos theory. 
 
5. ATTRACTORS 
 
One of the basic concepts within the field of dynamical systems theory is the concept of attractor. 
Typical dissipative dynamic systems, initially exhibit a transient behavior, after which the movement 
tends to a recurrent long term behavior. Movements with initial conditions close to each other tend to 
converge to stable solutions which are attractors (Magaña, 2011). The simplest attractor is a steady 
point at which all motion disappears. The pendulum is the archetypal example of this type of attractor, 
and was studied experimentally by Newton. Second, we have the periodic attractor. This for instance 
occurs in a thin steel plate driven by an electromagnet which carries an alternating current, this will 
settle to a constant vibration in resonance with the forcing frequency. After a small perturbation, 
transitory effects which fade slowly occur, after that the fundamental oscillation is reset. Thirdly we 
have a chaotic attractor (recently discovered), whose unexpected features have generated an explosion 
of interest and comes from the numerical solution of an equation perfectly deterministic and well 
defined. Leading to a perpetual chaos, in which the motion history has a broadband random power 
spectrum.  
 
6. CHAOTIC OSCILLATORS 
 
6.1. Chaotic dynamics in the Duffing oscillator 
 
Let us now be more concrete, consider the behavior of the specific equation 
 

txxx cos5.705.0 3 =++   (6.1) 
 
In mechanical engineering, such equation models, for example, the sinusoidal motion of a structure 
subjected to force and large elastic deformation. An example of the solution of a time series x vs. t 



obtained by numerical integration of Eqn. 6.1 is presented in Figure 6.1. This chaos has an irregular 
appearance, which persists for as long time meanwhile integrations are performed. Despite their 
recurrent nature is evidenced by the fact that certain patterns in the waveform are repeated at irregular 
intervals, never exact repetition, and movement is not really periodic (Ueda, 1980). 
In practice, chaotic attractors can be identified as stable structures in long-term trajectories in a limited 
region of phase space, beam whose trajectories are bent back on itself, resulting in the mixture and the 
divergence of neighboring states.  
 
6.2. Relaxed and cardiac pulse oscillations 
 
The second order equation of the oscillator:  
 

0)( 2 =++ xxFx ω  (6.2) 
 
A nonlinear damping function which exerts a force always opposite to the speed direction will cause a 
qualitative behavior similar to a linear damping system. However, the behavior of solutions of Eqn. 
6.2 is qualitatively different from a linear damped oscillator if F  acts sometimes in the same direction 
that the speed, which in this case indicates the presence of an energy source. The final behavior for 
Eqn. 6.2 can then be a limit cycle in the autonomous case, as discussed below. 
 
Differentiating Eqn. 6.2 with respect to time, and substituting υ  by x  so we have 
 

0)(' 2 =++ νωννν  F  (6.3) 
 
Choosing )3/()( 3 νναν −=F    so we obtain the equation of Van der Pol 
 

0)1( 22 =+−+ νωννα v  (6.4) 
 
This equation was extensively studied by Van der Pol (Van der Pol, 1928) with analog simulation 
using vacuum tube circuits, where the function F  corresponds to the nonlinear characteristic of a 
triode.  
 
6.3. Phase Diagram of chaotic oscillators 
 
6.3.1. Chaotic system Duffing 
This system describes a chaotic motion, which is governed by the differential equation (Eqn. 7.1) and 
for whom 0)( ≠tf  and 1=α . For this system, initial conditions are 0.3)0( =y  y 0.4)0( =y  with 
values of 0.1=m , 05.0=C  and 0.1=K . (Magaña, 2011). 
 
The time evolution of this system is shown in figure 6.1, corresponding to the graphic depicting the 
accelerogram. The phase diagram xx −  is presented in figure 6.2.  
 

  
Figure 6.1. Graphic xt −  Figure 6.2. Phase diagram xx −  



6.3.2. Van Der Pol oscillator 
 
This system describes a chaotic motion, which is governed by the differential equation (Eqn. 7.2) and 
for whom 0)( ≠tf  and 1=α  (Magaña, 2011). 
 
For this system, initial conditions are 0.2)0( =y  y 0.4)0( =y and values of 0.1=m , 53.8=µ , 0.1=K , 

2.1=A  and. 10/2πω = .  
 
The time evolution of this system is shown in figure 6.3, corresponding to the graphs depicting the 
accelerogram. In figure 6.4  the phase diagram xx −  is presented . 
 

  
Figure 6.3. Graphic xt −  Figure 6.4. Phase diagram xx −  

 

  
Figure 6.5. Van der Pol response spectrum Figure 6.6. Chua's circuit 

 
 
6.3.3. CHAOTIC CHUA’S SYSTEM 
 
Chua's circuit (also known as a Chua circuit, figure 6.6) is a simple electronic circuit that exhibits 
classic chaos theory behaviour (Kuznetsov et.al, 2011). It was introduced in 1983 by Leon O. Chua, 
who was a visitor at Waseda University in Japan at that time. The ease of construction of the circuit 
has made it a ubiquitous real-world example of a chaotic system, leading some to declare it "a 
paradigm for chaos”. By means of the application of the laws of electromagnetism, the dynamics of 
Chua's circuit can be accurately modeled by means of a system of three nonlinear ordinary differential 
equations in the variables x(t), y(t) and z(t), which give the voltages across the capacitors C1 and C2, 
and the intensity of the electrical current in the inductor L1, respectively. These equations are: 
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7. FRACTIONAL ANALYSIS OF CHAOTIC SYSTEMS 
 
In this chapter a series of fractional chaotic systems analysis are presented. For such dynamic analysis 



the package Matlab-Simulink was used. The behavior of the Duffing (7.1) and the Van der Pol (7.2) 
oscillators, and a dependent electrical system of three variables called Chua (7.3) were simulated. For 
all models, the classical solutions and with fractional exponent are presented. 
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The fractional derivative is denoted by: α

α
α
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For values of 1=α  the equations 7.1-7.3 coincide with the classical differential equations of each 
respective chaotic system. Below the chaotic analysis are presented. 
 
7.1. Chaotic system Duffing 
 
This system describes a chaotic movement, which is governed by the differential Eqn. (7.1) and where 
( ) 0≠tf . For this system, the initial conditions are ( ) 0.30 =x  and 0.4))0(( =xDα , with values of 

0.1=m , 05.0=C  y 0.1=K . The next is the analysis of the movement equation (7.1), corresponding to 
a value of 2.0=α . The time evolution of the system is shown in figures 7.1 and 7.2, corresponding to 
the graphics xt −  , )(2 txDt −  which represent the history of movement and the accelerogram, 
respectively. It can be seen, in figures 7.3 and 7.4, the phase diagrams. 
 

  
Figure 7.1. Graphic xt −  Figure 7.2. Graphic )(2 txDt −  

 

  
Figure 7.3. Phase diagram )(txDx α−  Figure 7.4. Phase diagram )()( 2 txDtxD −α  



The next is the analysis of the movement Eqn. 7.1, corresponding to a value of 5.0=α . The time 
evolution of the system is shown in figures 7.5 and 7.6, corresponding to the graphics xt −  , )(2 txDt −  
which represent the history of movement and the accelerogram, respectively. It can be seen, in figures 
7.7 and 7.8, the phase diagrams. 
 

  
Figure 7.5. Graphic xt −  Figure 7.6. Graphic )(2 txDt −  

 

  
Figure 7.7. Phase diagram )(txDx α−  Figure 7.8. Phase diagram )()( 2 txDtxD −α  

 
In Figures 7.4 and 7.8 shows that the phase diagram appears flattened to the lowest value of α , as if he 
had presented a "rotation" on an axis in the plane of the figure. 
 
7.2. Van Der Pol oscillator 
 
This system describes a chaotic movement, which is governed by the differential Eqn. 7.2 and where 
( ) 0≠tf . For this system, the initial conditions are ( ) 0.20 =x  y 0.4))0(( =xDα , 0.1=m , 53.8=µ , 

01.K = , 21.A =  y 10/2πω = .  The next is the analysis of the movement Eqn. 7.2, corresponding to a 
value of 2.0=α . The time evolution of the system is shown in figures 7.9 and 7.10, corresponding to 
the graphs xt −  , )(2 txDt −  which represent the history of movement and the accelerogram, 
respectively. It can be seen, in figures 7.11 and 7.12, the phase diagrams. 
 

  
Figure 7.9. Graphic xt −  Figure 7.10. Graphic )(2 txDt −  

 



  

Figure 7.11. Phase diagram )(txDx α−  Figure 7.12. Phase diagram )()( 2 txDtxD −α  
 
The next is the analysis of the movement Eqn. 7.2, corresponding to a value of 5.0=α . The time 
evolution of the system is shown in figures 7.13 and 7.14, corresponding to the graphics xt −  , 

22 / dtxdt −  which represent the history of movement and the accelerogram, respectively. It can be 
seen, in figures 7.15 and 7.16, the phase diagrams. 
 

  
Figure 7.13. Graphic xt −  Figure 7.14. Graphic )(2 txDt −  

 

  
Figure 7.15. Phase diagram )(txDx α−  Figure 7.16. Phase diagram )()( 2 txDtxD −α  

 
In Figures 7.12 and 7.16 also shows the phase diagram flatter for the lower value of α . 
 
7.3. Chua’s system 
 
This system describes a chaotic movement, which is governed by the system of differential equations 
7.2. For this system, the initial conditions are ( ) 1.00 =x , ( ) 1.00 =y y ( ) 0.00 =z . The next is the 
dynamic analysis of Eqn. 7.3, corresponding to a value of 0.0=== γβα , 0.10=A . The time 
evolution of the system is shown in figures 7.17 and 7.18, corresponding to the graphics xt −  , zt −  
Which represent the time histories of x  and z  , respectively. It can be seen, in figures 7.19 and 7.20, 
the phase diagrams yx − ,. zy − . 
 



  
Figure 7.17. Graphic  xt −  Figure 7.18. Graphic zt −  

 

  
Figure 7.19. Phase diagram yx −  Figure 7.20. Phase diagram zy −  

 
The next is the dynamic analysis of Eqn. 7.3, corresponding to a value of 2.0=α , 1.0=β 0.0=γ , 

5.8=A . The time evolution of the system is shown in figures 7.21 and 7.22, corresponding to the 
graphs xt −  , zt −  which represent the history of movement and the accelerogram, respectively. It 
can be seen, in figures 7.23 and 7.24, the phase diagrams. 
 

  
Figure 7.21. Graphic  xt −  Figure 7.22. Graphic  zt −  

 

  
Figure 7.23. Phase diagram yx −  Figure 7.24. Phase diagram zy −  

 
In this case also seen in Figures 7.20 and 7.24 the "rotation" of the phase diagram about a horizontal 
axis in the plane of the figure. 
 



8. CONCLUSIONS 
 
From the above we can make the following conclusions (both non-linearity, and the fractional order of 
derivation): 
 
Conclusions on the non-linearity: 
 
• The phase diagram is helpful to detect the geometric characteristics of different types of 

attractors. 
• The existence of multiple attractors induces a large irregularity in the movement history 
• The waveform is altered by nonlinearity ceasing to be sinusoidal and the projection of motion in 

the phase diagram can be very complex. 
• In a chaotic oscillator a periodic input generates an output irregular (random looking), but has 

patterns of behavior. 
• The response spectra have several peaks, although the oscillator is a degree of freedom (ie are 

broadband in Van der Pol response spectrum, figure 6.5). 
• The phase diagram in a chaotic oscillator shows some geometric structure, which does not exist in 

a pure random signal. This is one of the differences between both types of signals (random and 
chaotic). 

• The study in this work shows that the Duffing oscillator, the Van der Pol, and Chua phase 
diagrams are geometrically very different. Also, their movement histories have different patterns. 

 
Conclusions about the order of derivation: 
 
• In all analyzed chaotic oscillators, the effect of changing the value of the fractional order of 

derivation in the phase diagram is showed, as in the motion history. 
• The response spectrum of several peaks appears to be due only to the non-linearity of the 

parameters M, C and K, remaining this feature whatever the fractional order of derivation. 
• It is noted that with fractional derivatives there is a greater ability to simulate different motion 

histories. 
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