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SUMMARY: 

This paper presents a comprehensive inelastic damage-based degradation model for earthquake response analysis 

of reinforced concrete structures subjected to multi-component seismic loading. The proposed model is capable 

of capturing all the important effects of axial-flexure-shear interactions on the inelastic behaviour of reinforced 

concrete members and the degradations in stiffness and strength in the post-peak response of structural 

components in seismic progressive collapse of structures by considering the effects of progression and 

accumulation of damage in inelastic actions. The formulation of the beam-column element model is based on the 

stress-resultant concentrated plasticity approach and incorporates damage models that capture hysteretic damage 
accumulated during inelastic excursions in repeated reversed cycles. The developed model is an important 

prediction tool of realistic seismic progressive collapse behaviour of reinforced concrete structures.  
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1. INTRODUCTION 

 

Realistic prediction of seismic progressive collapse behaviour is essential in vulnerability and 

performance assessment of reinforced concrete structures. In order to be able to more realistically 

assess the seismic behaviour and performance of structural systems, accurate and computationally 

efficient numerical models for nonlinear seismic response analysis that capture the behaviour of 

members designed as ductile as well as non-ductile members are needed. Discrete finite elements, 

schematically shown in Figure 1.1(a – d), are commonly used to model beam-column members in 

large structures since they allow more insight into the seismic response of structural members as well 

as the entire structure compared to global models. They are computationally more efficient compared 

to the microscopic finite element model, shown in Figure 1.1(e). Discrete finite elements, also referred 

to as frame elements, can be based on concentrated plasticity and distributed plasticity formulation, 

shown in Figure 1.1(a – b) and in Figure (c – d), respectively.  Frame elements based on the 

concentrated- and distributed-plasticity approach have been proposed in a number of earlier studies. 

The section behaviour of a reinforced concrete member is described by stress resultant plasticity-based 

models in some of the proposed frame element models (Takizawa and Aoyama 1976, Chen and 

Powell 1982, El Tawil and Deierlein 1998), and by fiber models in others (Mari and Scordelis 1984, 

Lai et al. 1984, Zeris and Mahin 1991, Spacone et al. 1996). The focus in earlier research is mainly on 

modelling ductile response of reinforced concrete members governed by flexural yielding.  

 

However, reinforced concrete columns in existing older structures, which were typically not designed 

following the ductile approach, may not have the lateral strength or displacement ductility to develop 

flexural yielding and withstand the strength and ductility demands imposed during severe ground 

shaking. As observed in major earthquakes and demonstrated in numerous experimental studies on 

component cyclic behaviour (Ghee et al. 1989, Saatcioglu and Ozcebe 1989, Watanabe and Ichinose 

1992, Wong et al. 1993, Priestley et al. 1994, Sezen 2002, Elwood and Moehle 2003), reinforced 

concrete columns with inadequate detailing, such as insufficient or poorly detailed transverse 

reinforcement and inadequate length development, may exhibit brittle shear failure or ductile shear 

failure in the flexural plastic hinge zone under combined axial-flexure-shear effects. It has also been 



shown that shear-critical reinforced concrete columns may suffer severe degradations and exhibit 

significant pinching behaviour as more damage is accumulated. To quantify the seismic damage to 

individual structural components or the global structure accumulated during inelastic excursions in 

repeated reversed cycles, several damage indices have been proposed in previous research, including 

Park and Ang (1985), Kratzig et al. (1989), Kunnath et al. (1992), Mehanny and Deierlein (2001). 

 

 
                    (a)                  (b) (c)             (d)          (e) 

Figure 1.1. Idealized Models of Beam-Column Elements: (a) Zero-Length Nonlinear Spring Hinge Model;  

(b) Concentrated Generalized Plastic Hinge Model; (c) Finite Length Hinge Model; (d) Fiber Section 

Formulation Model; (e) Microscopic Finite Element Model (adapted from Deierlein et al. 2010) 

 

Recent efforts have been undertaken in the development of numerical models for capturing the 

nonlinear response of reinforced concrete members susceptible to nonductile and ductile shear failure. 

Concentrated plasticity models considering shear effects based on single-component hinge approach 

have been proposed by Pincheira et al. (1999), Lee and Elnashai (2002), Elwood and Moehle (2003), 

Sezen and Chowdhury (2009), Xu and Zhang (2011). In most single-component hinge models, the 

influence of the axial force-moment interaction on the post-peak behaviour of reinforced concrete 

members is not considered, resulting in important limitations since the effects of variable axial load on 

the flexural and shear capacity have been shown to have significant impact on the degradations of 

stiffness and strength. In addition, single-component hinge models are mainly suitable for modelling 

the planar behaviour of reinforced concrete components since interaction effects due to bidirectional 

loading are ignored. To overcome some of the limitations in single-component hinge models, recent 

studies have employed yield-surface and evolution models approach to account for the force 

interaction in the case of multiaxial loading (Ricles et al. 1998, Abou-Elfath et al. 1998, ElMandooh 

Galal and Ghobarah 2003, Kaul 2004). Review of concentrated plasticity beam-column models 

incorporating degradation models for capturing the effects of shear failure and post-shear failure 

behaviour of reinforced concrete components is presented in Reshotkina and Lau (2011). Distributed 

plasticity models incorporating flexural and shear behaviours based on the fiber approach, in which 

the axial load-moment interaction is readily taken into account,  have been proposed by Petrangeli et 

al. (1999), Shirai et al. (2001), Marini and Spacone (2006), Mazars et al. (2006), Martinelli (2008), 

Ceresa et al. (2009), Mullapudi and Ayoub (2010), among others. Distributed plasticity fiber models 

are computationally demanding and require complex constitutive models for concrete that capture the 

post-peak degradation behaviour, which are not readily available. On the other hand, stress-resultant 

concentrated plasticity models are computationally more efficient than the distributed plasticity fiber 

models, and also more practical for modelling complex phenomena like post-shear failure cyclic 

response using hysteretic models that require fewer parameters to capture degradation behaviours 

under cyclic loading and can be calibrated based on force-deformation relations available from 

previous experimental research on cyclic behaviour of reinforced concrete components. However, the 

current frame elements incorporating stiffness and strength degradation models are mostly suitable for 

analysis of 2D plane behaviour of reinforced concrete components or do not capture the full axial-

flexure- shear interaction effects and the effects of accumulated damage on the 3D behaviour.  

 

As it can be observed from the review presented herein, there is a need for further developments of 

comprehensive and computationally efficient models that capture accurately the three-dimensional 

behaviour of reinforced concrete structural components in seismic response analysis of structures. This 

is particularly important for design of structures with high earthquake resilience and in devising 

effective retrofit and repair schemes for old deficient and earthquake damaged structures. This 

research is focused on the development of a comprehensive model for seismic response analysis of 

reinforced concrete structures subjected to multi-component seismic loading that captures the 



behaviour of members in new structures designed as ductile as well as non-ductile members in 

existing older deficient structures. The proposed formulation is based on the stress-resultant 

concentrated plasticity approach and considers the full axial-flexure-shear interaction effects on the 

inelastic behaviour as well as biaxial interaction effects on the degradation of stiffness and strength by 

incorporating damage models capturing hysteretic damage in multi-directions. The proposed model 

described herein is an important tool for accurate capturing of the degradation behaviours of 

reinforced concrete components due to the effects of accumulated damage and the damage 

characteristics of global structures from initiation and progression of failure until ultimate collapse 

during major earthquakes. The proposed analysis model is thus suitable for assessing structures against 

the full range of performance objectives, including collapse prevention.  

 

 

2. BEAM-COLUMN ELEMENT FORMULATION 

 

The formulation consists of a beam-column element with zero-length generalized plastic hinges 

concentrated at the ends of the element, as shown in Figure 2.1(a). The element between the hinges is 

elastic. Each hinge has three deformations, axial deformation and rotations about the local element 

axes. The contributions from shear deformations in the hinge are considered in the total deformations. 

Each hinge is modelled as two subhinges in series, one for the flexural behaviour and one for the shear 

behaviour. Yield surface is defined to model the interaction between axial force and biaxial bending 

moments, as shown in Figure 2.1(b). Shear failure is captured by shear failure surface defined in terms 

of axial force and shear forces, as shown in Figure 2.1(c). Post-yield inelastic hardening behaviour and 

post-shear failure softening behaviour are captured by different evolution models defined for the yield 

surface and the shear failure surface, respectively, as described in details in the following section.  

 

 
                                         (a)                                (b)             (c) 

Figure 2.1. Schematics of the New Beam-Column Element: (a) Concentrated Plasticity Model;  

(b) Yield Surface Model; (c) Shear Failure Surface Model 
 

2.1. Inelastic Element Formulation  

 

2.1.1. Yield surface formulation  

Yielding occurs when the force state of a member reaches the yield surface and the force state remains 

on the yield surface during continued inelastic loading. The yield surface is assumed to be a 

continuous, convex, rate independent function of axial force and bending moments on a cross section 

of the member, and can be represented as follows: 

 

 (2.1) 

 

where ,  and  are normalized axial force and bending moments about  and  axis, 

respectively.  For reinforced concrete sections, the axial force and moments can be normalized by the 

axial load and the moments at the balanced failure point, where the concrete starts to crush in 

compression as the outermost steel reinforcement bars begin to yield in tension. The equations 

describing the force interaction surface can be based on yield surface functions proposed in previous 

research, such as Tseng and Penzien (1973), El-Tawil (1996), among others.  

 

2.1.2. Yield surface evolution models   

An evolution rule determines how the yield surface evolves in the force space to reflect the change in 



structural behaviour upon undergoing inelastic deformations of the member, i.e. changes its position, 

shape and size, which results in hardening/softening in the force-deformation response. In the 

proposed formulation, a combination of kinematic hardening rule and non-uniform contraction rule is 

considered. The kinematic rule results in translation of the yield surface, while the contraction rule 

results in non-uniform shrinking of the yield surface, as shown in Figure 2.2(a). The evolution model 

developed by Kaul (2004) for yield surfaces in terms of axial force and bending moment for modelling 

in-plane behaviour is modified and extended in this research to yield surfaces defined in terms of axial 

force and biaxial bending moments to model 3D behavior by considering the effects of accumulated 

damage in inelastic excursions in one direction on the behaviour in other out-of-plane directions. 
 

The kinematic rule in the proposed evolution model is used to model the hardening response in flexure 

within the same cycle of inelastic excursion. The magnitude of hardening is governed by the plastic 

stiffness, , a 3x3 diagonal matrix which contains terms for the axial force, , and for the 

bending moments,  and . In the proposed formulation, the plastic stiffness terms are 

gradually reduced from high initial values to zero as the member accumulates damage in large 

inelastic excursions and repeated load reversals. This results in the gradual reduction of the amount of 

hardening in the force-deformation response, as shown in Figure 2.2(b), and thus allows capturing the 

post-yield behaviour of reinforced concrete members affected by concrete crushing and bar buckling 

more realistically. The direction of surface translation is specified by the evolution direction. 

Summary of the main kinematic rules for surface translation can be found in El-Tawil (1996), Chen 

and Han (2007). In the proposed model, a normal, centroidal or constant-P direction of evolution can 

be used. In the case of normal direction of evolution, motion of the yield surface is in direction parallel 

to the normal vector of the current force state; in centroidal evolution, the surface motion is directed 

along a unit vector connecting the surface centre to the current force state; and in constant-P evolution, 

the surface translates in a plane parallel to the plane defined by the moment axes. The non-uniform 

contraction rule is formulated to model the strength degradation under repeated cyclic load reversals. 

At the end of each half cycle, i.e. at zero force or when the force switches direction, the yield surface 

is contracted using damage indices based on plastic deformations and hysteretic energy, such as those 

proposed by Park and Ang (1985), Kratzig et al. (1989) and Kunnath et al. (1992). As shown in Figure 

2.2(b), this results in loss of strength, , in each subsequent loading cycle even when the same level 

of inelastic displacement is maintained.  

 

 
(a)                                                   (b) 

Figure 2.2. Inelastic Modeling of Flexural Response: (a) Evolution of the Yield Surface;  

(b) Force–Deformation Response 
 

The formulation of the proposed evolution model is based on maintaining two states – the initial state 

of the yield surface and the current translated deformed state of the subsequent surface, as shown in 

Figure 2.2(a). Updating the state of evolution is achieved by using mapping between the state of the 

initial yield surface, represented by superscript 0, and the current state, represented by superscript 1. 

The surfaces shown in Figure 2.2(a) are drawn in  plane for the purpose of clarity, where  is 

the normalized resultant moment, however, the formulations are valid for 3D case. A translation 

vector, , of dimension 3x1, accounts for the motion of the yield surface in force space. A 



contraction factor matrix, , of dimension 3x3, represents the contraction of the yield surface along 

each force axis. The matrix  is equal to the identity matrix for the initial state of the yield surface 

or in case of kinematic hardening only. At any trial step  a force state on the subsequent yield 

surface, , can be mapped to a corresponding force state on the initial yield surface, , so that 

iterations can be performed using the original yield surface functions. The force vector  can be 

expressed as follows 

 

 (2.2) 

 

The contraction factor matrix at step ,  , is a diagonal matrix and its terms for axial load and 

bending moments, , , , respectively, are based on damage indices. The 

advantage of using the mapping technique is that the force vector corresponding to the current state is 

updated depending on the translation and contraction of the subsequent yield surface, while the 

equations and parameters used for deriving the yield surface function remain unchanged during the 

evolution. Thus, the extensibility of the formulations is facilitated for defining and using different 

yield surface functions in the inelastic modelling.  

 

The element tangent stiffness matrix, , is obtained by modifying the element elastic stiffness 

matrix, , using plastic reduction matrix, representing the change in stiffness resulting from 

inelastic behaviour of the element. It can be shown that for the hardening model the plastic reduction 

matrix, , can be expressed by 

 

 (2.3) 

 

where  is the yield surface gradient at the location of the force state.  

The incremental force can be calculated by 

 

 (2.4) 

 

2.1.3. Shear failure surface formulation  

Shear failure is detected when the shear force state of a member reaches the shear failure surface. 

Upon increasing the inelastic deformations, the shear force state remains on the subsequent post-shear 

failure surface. Similarly to the yield surface, the shear failure surface is assumed to be a continuous, 

convex function of axial force and shear forces on a cross section of the member, and can be defined 

as follows 

 

 (2.5) 

 

where ,  and  are normalized axial force and shear force capacity about  and  axis, 

respectively.  For reinforced concrete sections, the axial force and shear force can be normalized by 

the axial load and the shear force capacity at the balanced failure point. The shape of the shear failure 

surface can be described using functions similar to the yield surface functions mentioned above. For 

symmetric reinforced concrete sections, ElMandooh Galal and Ghobarah (2003) proposed a simplified 

ellipsoidal shear strength-axial strength interaction diagram based on experimental test results by 

Vecchio and Collins (1986).  

 

2.1.4. Shear failure surface evolution models   

The post-shear failure response to further loading, i.e. increasing inelastic deformations, is 

characterized by softening or in-cycle strength degradation. To capture the softening behaviour of 

reinforced concrete members, an evolution model for the shear failure surface is proposed based on a 

non-uniform contraction rule. In this evolution model, the shear failure surface can shrink differently 

in each direction, e.g. positive and negative directions along the axial force axis and the shear force 



axes, which results in change in both size and shape of the surface, as shown in Figure 2.3(a). By 

using the non-uniform contraction rule in the proposed model, biaxial interaction effects on the 

evolution of the post-shear failure surface are accounted for by considering the damage accumulated in 

each direction. For example, damage due to excessive inelastic deformations and repeated cycles of 

loading in direction of   axis will affect the capacities of the member in direction of   axis, and vice 

versa. For this purpose, separate damage indices are calculated for the positive and negative directions 

of  and axes, and interaction rules are defined, as discussed later.  

 

The magnitude of evolution in the proposed model is determined as a function of the degradation 

stiffness, . As reported by Elwood and Moehle (2003), once the column fails in shear, a linear 

degradation stiffness can be used based on experimental observations that at the time of axial failure, 

the shear capacity of the column degrades to approximately zero (Nakamura and Yoshimura 2002). 

Thus, the slope of degradation, , is given by 

 

 (2.6) 

 

where  is the shear force in the member at shear failure,  is the corresponding drift at shear failure, 

and  is the drift at axial failure, as shown in Figure 2.3(b). The drifts  and  can be determined 

using the empirical drift capacity models proposed by Elwood and Moehle (2003).  

 

 
                                  (a) (b)                  (c) 

Figure 2.3. Inelastic Modeling of Shear Response: (a) Evolution of the Shear Failure Surface;  

(b) Force–Deformation Response; (c) Shear Failure Modes 

 

Similarly to the yield surface evolution model, the updating of the state of evolution of the shear 

failure surface is achieved by using mapping between the state of the initial surface, represented by 

superscript 0, and the current state, represented by superscript 1, as shown in Figure 2.3(a). Since 

translation is not used in this evolution model, mapping is governed only by a contraction factor 

matrix, , which is also of dimension 3x3 and represents the contraction of the shear failure 

surface along each force axis based on damage indices. The matrix  is equal to the identity matrix 

for the initial state of the shear failure surface. At any trial step , the force state on the subsequent 

post-shear failure surface, , can be mapped to a corresponding force state on the initial yield 

surface, , by using the following relationship: 

 

 (2.7) 

 

The iterations can be performed using the equations and parameters of the original shear failure 

surface function, and thus the proposed evolution model allows extensibility of the formulations in 

defining and using different shear failure surface functions.  

 

The effects of shear deformations are included in the element stiffness formulation by using the 

flexibility approach. The element flexibility equations are first derived, and then transformed into 

element stiffness equations by inversion and supplemental matrix operations using a procedure similar 

to that given in McGuire et al. (2000). Using this approach allows modelling the post-shear failure 

softening behaviour by modifying the shear components in the stiffness to achieve degradation.   



Shear-critical behaviour of reinforced concrete members, including behaviour governed by brittle 

shear failure and behaviour governed by flexure-shear failure, is captured by the proposed model using 

force-based and displacement-ductility based criteria. In Figure 2.3(c), the force-deformation response 

of columns exhibiting behaviour dominated by brittle shear failure and limited ductile behaviour with 

shear failure are shown as case 1 and case 2, respectively. In the proposed model, shear failure in these 

cases is detected when the shear force state reaches the initial shear failure surface, i.e. shear demand 

exceeds the initial shear capacity. In the case where the column exhibits moderate ductile behaviour 

with shear failure resulting from degradation of the initial shear strength due to inelastic flexure-shear 

interaction, shown as case 3 in Figure 2.3(c), a displacement-ductility based criterion is used in the 

proposed model to detect shear failure as a function of the member drift. To capture the degradation of 

shear strength in the flexural plastic hinge zone, the initial shear failure surface is contracted under 

pronounced flexural displacement ductility demand. The shrinking of the shear failure surface under 

such conditions is controlled by monitoring the element’s flexural displacement ductility demand 

imposed about each axis, and updating the shear failure surface as governed by a shear limit surface. 

The shear limit surface function can be defined based on the equation proposed by Kaul (2004), which 

is derived using the empirical drift capacity models for reinforced concrete columns prone to flexure-

shear failure proposed by Elwood and Moehle (2003). In this research, shear limit functions are 

defined for  and  axes to govern the shear capacity in the corresponding direction. Since damage 

accumulated in inelastic excursions in one direction affects the shear strength and behaviour in other 

out-of-plane directions, biaxial interaction effects on the shear limit surfaces are considered in 

modelling 3D behaviour of reinforced concrete members based on multi-component damage indices, 

as discussed in the next section. 

 

2.2. Formulation of Damage-Based Cyclic Degradation Models 

 

The approach used in the cyclic behaviour modelling in this research is based on the incorporation of 

damage models in the beam-column element formulation to track the evolution of damage and 

consider its effects on the gradual deterioration in stiffness and loss of strength. The proposed model is 

thus capable of capturing the degradation behaviour of structural components beyond the peak 

response in a more realistic way. In the proposed formulation, cumulative and combined damage 

models based on deformations as well as hysteretic energy are used, which are suitable for 

representing damage in reinforced concrete members under cyclic loading. In this research, the cyclic 

models proposed by Kaul (2004) for modelling 2D plane hysteretic behaviour of reinforced concrete 

members are modified to include interaction with damage models and extended to capture full 3D 

behaviour by considering the biaxial interaction effects on stiffness and strength degradation.  

 

2.2.1. Cyclic stiffness model   

The cyclic stiffness model is formulated separately from the generalized plastic hinge model, 

presented in section 2.1, to control the degrading stiffness upon unloading after yielding and 

subsequent reloading in the element hysteretic response dominated by flexure. The cyclic stiffness 

model requires force, deformation and damage index from the element response in order to determine 

degradation factors to vary the element stiffness components. The governing force quantity is the 

element shear normalized by the shear force corresponding to first yield. The governing deformation is 

the maximum natural rotation of the two ends of the element normalized by the rotation at first yield. 

A bilinear peak-oriented model is considered in the proposed cyclic stiffness model. The unloading 

stiffness, , is different from the reloading stiffness, , but they are assumed to 

remain constant within one loading cycle, as shown in Figure 2.4(a). Degradation in stiffness is 

achieved by applying degradation factors to the flexural  and shear  stiffness 

components so that  and the degradation factors are as follows: 

 
 

 

 

 

(2.8) 



where  are weighting factors;  , ,  and  are 

damage indices for positive and negative excursions in  and  axes, respectively. The damage indices 

are calculated by damage models that interact with the element during inelastic excursions and keep 

track of the accumulated damage during the loading history. The unloading stiffness is degraded using 

damage indices based on flexural deformations and dissipated hysteretic energy, such as those 

proposed by Park and Ang (1985) and Kunnath et al. (1992). The reloading stiffness is determined 

based on force and deformation quantities from previous cycles to obtain peak-oriented response. The 

peak-oriented response is then updated to be consistent with the contracted yield surface, which allows 

the model to also capture the cyclic strength deterioration. Degraded elastic stiffness for unloading and 

reloading as well as the yield surface are updated for each loading cycle considering the accumulated 

damage, and thus capturing the degradation characteristics of the cyclic response in flexure, as 

illustrated in Figure 2.4(b).  

 

 
(a)                      (b)                        (c)                         (d) 

Figure 2.4. Degradation Models: (a) Cyclic Stiffness Model; (b) Cyclic Response in Flexure;  

(c) Cyclic Pinching Model; (d) Cyclic Response in Shear 

 

2.2.2. Cyclic pinching model   

After failing in shear and softening, the cyclic pinching model controls the degrading stiffness upon 

unloading and during subsequent reloading, which is characterized by pinching. Similarly to the cyclic 

stiffness model described in the previous section, the cyclic pinching model is formulated separately 

from the generalized plastic hinge model and uses force, deformation and damage index quantities 

from the element response to provide degradation factors for the stiffness components. In the proposed 

cyclic pinching model, shown in Figure 2.4(c), the unloading stiffness, , is degraded using 

damage indices based on shear deformations and dissipated hysteretic energy. The degradation factors 

used to vary the flexural and shear stiffness components are calculated using Eqn. 2.8. The pinching 

stiffness, , is determined based on force and deformation quantities from previous cycles, and 

the pinching is assumed to continue until the imposed deformation equals the peak deformation after 

shear failure. Upon reaching the target pinching deformation, the stiffness is changed to the degraded 

reloading stiffness, , to obtain peak-oriented response. Cyclic strength degradation is also 

considered in the pinching model by modifying the peak-oriented response to be consistent with the 

contracted post-shear failure surface. Similarly to the cyclic stiffness model, degraded elastic stiffness 

for unloading, pinching and reloading as well as the post-shear failure surface are updated for each 

loading cycle considering the accumulated damage, and thus capturing the degradation characteristics 

of the post-peak cyclic response in shear, as illustrated in Figure 2.4(d). 

 

The state determination in the formulation of the proposed cyclic models is based on a consistent 

event-to-event strategy. The concept of primary and follower half cycles is applied in the developed 

event-based strategy to facilitate the separation of positive and negative excursions. The concept of 

primary and follower half cycles has previously been used in Kratzig et al. (1989) in the development 

of cumulative damage index based on dissipated energy.  

 

The proposed beam-column element is to be incorporated into the OpenSees software framework 

(McKenna 1997). The formulation of the new models presented herein is developed considering 

flexibility and extensibility of the implementations based on object-oriented design concepts.  



3. CONCLUSIONS 

 

The objective of this study is the development of a comprehensive and computationally efficient 

beam-column finite element model for seismic response analysis of reinforced concrete structures 

subjected to multi-component seismic loading that captures the behaviours of members in new 

structures designed as ductile as well as non-ductile members in existing older deficient structures. 

The proposed formulation is based on stress-resultant concentrated plasticity concepts using force 

interaction surfaces and evolution models to capture nonlinear axial-flexure-shear interaction, flexural 

hardening, shear failure and post-shear failure softening of reinforced concrete members under cyclic 

load reversals of biaxial bending moments with variable axial load. Deterioration of shear strength in 

the plastic hinge zone with increasing flexural displacement ductility demand is also accounted for by 

using ductility-related shear limit surface. The approach used in the cyclic behaviour modelling is 

based on the incorporation of damage models in the beam-column element formulation to monitor the 

evolution of damage and capture its effects on the gradual deterioration of stiffness and strength in the 

post-peak response of structural components. Biaxial interaction effects on stiffness and strength 

degradation are also considered in the formulation based on multi-component damage models 

capturing hysteretic damage in multi-directions, and thus the proposed cyclic degradation models are 

suitable for capturing 3D behaviour of reinforced concrete members under general loading. Numerical 

simulation models, such as the model proposed in this research, capable of accurate capturing of 

damage and degradation response characteristics would lead to more resilient earthquake design of 

new structures as well as more efficient retrofit and rehabilitation strategies for existing older deficient 

structures. 
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