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SUMMARY: 
The output of risk analyses is used by insurance and reinsurance companies for critical decision-making that can 
have a profound effect on the business.  As more companies use and rely on the results of catastrophe risk 
analyses, it is important for companies to have a good understanding of the uncertainties associated with the risk 
loss metrics.  Loss risk models are complex combinations of components, which in turn have uncertainties that 
are difficult to evaluate.  This paper presents a simplified framework to incorporate uncertainties in the different 
components that can be combined using logic trees.   
 
Specific cases for evaluating the effects of the seismic hazard uncertainties are given.  The treatment of the 
epistemic and aleatory uncertainty of the ground motion models within the framework and the resulting 
uncertainties in the portfolio loss metrics are presented.  Additional source of uncertainties can also be 
accommodated within the framework.   
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1. INTRODUCTION 
 
Large earthquakes such as the 2011 Mw6.3 Lyttelton earthquake in New Zealand and the Mw9.0 
Tohoku earthquake in Japan were not included in the earthquake hazard models developed by the state 
agencies. This illustrates the importance of considering uncertainty in the earthquake source model for 
evaluating earthquake risks.  The primary objective of modelling is to describe the behavior or 
relationship of a variable of interest with other variables that can be measured or assumed.  The 
phenomena of earthquake, earthquake ground motion, and building response have inherent 
variabilities that are difficult to predict.  Because of the complex nature of the damage or loss due to 
earthquakes, it is not easy to formulate equations that could capture the uncertainty due to different 
components of the loss model. 
 
This study delves into the possible sources of the uncertainties that contribute to the total uncertainty 
of the insured losses due to earthquake shaking, and examines how these ultimately affect the 
variability of the insured loss.  Although there are many possible sources for the uncertainty,  this 
study focuses on a few sources that can have significant contributions to the loss uncertainty; in 
particular, the effect of the hazard uncertainties on the loss uncertainty.  This paper also describes a 
simple methodology for quantifying the uncertainty in the loss results of a portfolio of buildings. 
 
 
2. EARTHQUAKE RISK MODEL FRAMEWORK 
 
The methodology for quantifying the earthquake risk for insurance and reinsurance companies uses a 
modular framework consisting of five basic modules (Figure 1).  The Stochastic Event Module defines 
future events and their recurrence rates.  The events are simulated from a source model that describes 



the types of earthquakes and their physical locations and dimensions.  For a stochastic event, the 
expected ground motion at a given location of a building is calculated by the Hazard Module.  The 
ground motion includes the effects of site amplification and other geotechnical properties provided by 
the Geocoding/Exposure Module.  The Vulnerability Module uses the characteristics of the building(s) 
located at a site to select an appropriate damage curve to estimate the mean and coefficient of variation 
of the damage.  Finally, the Financial Analysis module uses the financial terms of the insurance 
policies or contracts to calculate the loss for multiple stakeholders.  This includes aggregating losses 
from multiple buildings if they are part of the policy. 
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Figure 1. Earthquake Risk Modelling Framework 
 
The probabilistic framework used in this study is derived from the Performance-based Earthquake 
Engineering (PBEE) framework developed at the Pacific Earthquake Engineering Research (PEER) 
Center at the University of California, Berkeley (Deierlein, et al., 2003; Aslani and Miranda, 2005).  
This framework can be described as an expression of the total probability theorem as follows: 
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where: DV is the decision variable (e.g., collapse), DM is the damage measure (e.g., mean loss curve), 
EDP is the engineering demand parameter (e.g., maximum inter-story drift), and IM is the intensity 
measure.  In the context of this study, the decision variable is the financial loss and the intensity 
measure could be the pseudo-response acceleration or response displacement.  The most common 
method to describe the distribution of IM is through the use of Ground Motion Predictive Equations 
(GMPE), which estimate the ground motion (intensity measure) from the event parameters 
(magnitude, depth), site parameters (distance, VS30), etc.  The relationship can also be expressed in the 
Probabilistic Seismic Hazard Analysis (PHSA) framework in discrete form as: 
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where: ),( rmf  represents a GMPE with associated uncertainty parameters, )( jM mP  is the 

probability distribution for Magnitude j for source M, and )( iR rP  is the probability distribution of the 
source-to-site distance.   
 
The use of a probabilistic framework provides a unified way to incorporate the uncertainties of the 
components.  It also allows consideration of the uncertainty of one of the components while keeping 



the others to their conditional mean values. This leads to a simple way of evaluating the sensitivity or 
uncertainty of the Decision Variable due to the uncertainty of the components in the framework. 
 
 
3. METHODOLOGY  
 
It can be very complex and cumbersome to determine the contribution of each of the sources of 
uncertainty in portfolio risk analyses.  Each component in the risk analysis framework in Figure 1 has 
a number of subcomponents; thus, estimation of uncertainties of the components is very complex due 
to differences in the distribution characteristics of the subcomponents and correlation between them.   
The correlation in losses or decision variable due to the variation in different components of the model 
is also difficult to quantify.  To improve our understanding of the effect of hazard uncertainties on the 
risk uncertainties, the individual effects of each of the components are evaluated.  Deriving the relative 
sensitivity due to the variation in the different components of the model will be the initial step.  This 
study focuses primarily on the hazard uncertainties; specifically, the uncertainties in the GMPEs. 
 
3.1. Treatment of Hazard Uncertainty 
 
3.1.1. Epistemic Uncertainty  
Epistemic uncertainty arises from incomplete knowledge about either the methodologies or the 
modelling parameters. The epistemic uncertainty can be reduced by the analysis of more data and 
better understanding of the processes.  The methodology for the generation of the 2008 National 
Seismic Hazard Maps (NSHM) for the United States developed by the United States Geological 
Survey (USGS) considers the epistemic uncertainty in the ground motion intensities by using a logic 
tree of multiple GMPEs to estimate the ground motion hazard at a given site (Petersen, et al., 2008).  
In addition, since the Next Generation Attenuation (NGA) West project had limited amount of data for 
large magnitude earthquakes and there was significant interaction among the developers with the 
possibility of influencing each other’s decision, it was deemed necessary to specify additional 
variability for the Western United States.  The amount of additional uncertainty (“dgnd” as specified 
by USGS) was based on the number of data used in the development of the GMPEs and given in Table 
3.1. 
 
In this study, a similar logic tree for multiple GMPEs is adopted to capture the GM uncertainties in 
earthquake hazard. The examples in this study for the Western U.S. also include the additional 
variability as specified in the USGS methodology.  This study considers the three NGA relationships 
used in the NSHM, namely, Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou 
and Youngs (2008).  Different combinations of the GMPEs, with and without the additional 
variability, are considered to study the sensitivity of the estimated losses. 
    

 
 

Figure 2. Epistemic uncertainty is considered by the use of multiple GMPEs and additional uncertainty 
(Petersen, et al., 2008).  The models are organized as logic trees resulting in 9 individual models. 



Table 3.1. Additional uncertainty applied to NGA relationships for the 2008 
National Seismic Hazard Maps (Petersen, et al., 2008) 

Magnitude Rupture Distance (km) Additional uncertainty 
term (dgnd) 

5≤M<6 Rrup<10 0.375 
5≤M<6 10≤Rrup<30 0.210 
5≤M<6 Rrup≥30 0.245 
6≤M<7 Rrup<10 0.230 
6≤M<7 10≤Rrup<30 0.225 
6≤M<7 Rrup≥30 0.230 

M≥7 Rrup<10 0.400 
M≥7 10≤Rrup<30 0.360 
M≥7 Rrup≥30 0.310 

 
3.1.2. Aleatory Uncertainty  
Aleatory uncertainty is based on natural randomness and cannot be reduced by the inclusion of more 
data in the analysis.  GMPEs specify the median and the standard deviations of GM intensities based 
on the observed records.  In addition, the GM intensities are correlated spatially, such that the 
deviations from the mean at two nearby locations are more correlated than the deviations at locations 
that are farther apart.  The effect of this spatial correlation on the uncertainty of the estimated insured 
loss was studied by Molas, et al. (2006) for a single large event.  They assumed independence of the 
loss at different sites and found that the epistemic uncertainty in the ground motion model contributes 
significantly to the variability of the event loss estimate. This spatial correlation of GM intensities, 
however, is not considered in this study. 
 
The ground motion uncertainty is convoluted with the damage uncertainty using Monte Carlo 
simulation to estimate its combined effect with the loss Coefficient of Variation (CV).  This paper 
focuses only on the hazard uncertainties and does not show the results for all the different sources of 
uncertainties, which would have required the convolution process. 
 
3.2. Measuring the Effect of Hazard Uncertainty on the Risk Uncertainty 
 
Two commonly used loss metrics for the quantification of insurance risk are the Average Annual Loss 
(AAL), sometimes referred to as the pure premium, and the Loss Exceedance Probability (EP) curve.  
Given a set of stochastic events with a mean loss estimate, the AAL is the cross-product of the loss 
and the annual event rate.  While the AAL is not affected by the aleatory uncertainty in the loss due to 
an event, it is affected by the epistemic variation in the mean loss, which is generated based on the 
GMPE logic tree.  The loss (aleatory) uncertainty for an event, on the other hand, directly influences 
the EP curve calculations.   
 
The EP curve estimates the annual probability of exceedance of loss. Assuming that each event is 
independent, the probability of exceeding a given loss threshold is the sum of the probability of 
exceeding the threshold given the event loss distributions.  By calculating several loss thresholds, an 
exceedance curve is generated for the loss thresholds (Figure 3).  
 
 
4. RESULTS AND DISCUSSION 
  
4.1. Exposure for the Loss Calculations 
 
The risk analysis methodology can be performed on a single location (for building-specific risk 
calculations) or on a number of locations (for portfolio risk calculations) over a region when the 
building characteristics are known. For the risk analysis of a portfolio of buildings, however, the distri-
butions of the location and characteristics of the buildings exposed to the hazard play a crucial role. 
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Figure 3.  The probability of exceeding a loss threshold is calculated from the event loss distributions (in red).  
The exceedance probability (EP) curve (thick blue line) is generated when enough loss thresholds are analyzed. 

 
Very high hazard in areas with very little exposure or number of buildings can be a low risk, while an 
infrequent event in high concentrations of exposures in downtown Memphis, for example, can be a 
significant contributor of risk to an insurer or reinsurer.   
 
The exposure in this study uses the economic basis that represents the built environment, i.e., 
considers all the buildings in a region of interest.  The portfolio of buildings in a built environment is 
represented by the economic exposure database (EED) and this is a modelled distribution of residential 
and non-residential buildings based on population, tax assessor’s files, and other public and private 
sources of information.  In this study, the distribution of building characteristics and occupancy types 
are based on multiple sources of information at different levels of resolution, such as the USGS 30-
meter National Land Cover Database (NLCD), and the National Census data. The database used in 
this study is defined at the postcode level and includes building and content values. 
 
4.2. Sensitivity of Event Losses  
 
To show the range of losses related to the epistemic uncertainty from the choice of ground motion 
attenuation relationships, two scenarios, which are a repeat of the 1994 Northridge earthquake and of 
the 1906 Great San Francisco earthquake,  are shown in Figures 4 and 5, respectively.  The branches 
of the logic tree include the three NGA relationships used in the National Seismic Hazard maps as 
well as the additional epistemic uncertainties (lower and higher) given by the USGS methodology.  In 
implementing a stochastic model, both the higher additional uncertainty and the lower additional 
uncertainty are considered equally.  Since the relationship between ground motion and loss is non-
linear, the inclusion of both will generally not cancel out in terms of losses. 
 
Figure 4 shows that the loss estimates from the three NGA relationships are very similar, with 
approximately +/- 3% change from the reference model.  However, when the additional epistemic 
uncertainty is considered, the change in loss becomes very significant; around -32% for the lower 
uncertainty and around +45% for the higher uncertainty.  The effect of the additional uncertainty on 
the loss estimates among NGA relationships is similar since the same level of uncertainty is applied. 
 
For stochastic modelling, combining the effects of both the high and low additional uncertainty 
produces very small changes in the loss estimates.  When taken together, their effects mostly cancel 
each other, and the resulting effect of the additional epistemic uncertainty becomes minimal.  This 
implies that the mean losses for stochastic modelling are not affected significantly by the additional 
uncertainty, but the estimation of the event loss standard deviation will be affected given the large 
percentage difference. 
 



0%

2%

-3%

3%

-31%

-34%

-29%

47%

40%

47%

-60% -40% -20% 0% 20% 40% 60%

Combined

B&A no Unc

C&B no Unc

C&Y no Unc

B&A Low Unc

C&B Low Unc

C&Y Low Unc

B&A Hi Unc

C&B Hi Unc

C&Y Hi Unc

Northridge (CA exposure)
Varying GM Attenuation wrt Combined 

           

0%

2%

-3%

3%

4%

-1%

5%

0%

3%

0%

-60% -40% -20% 0% 20% 40% 60%

Combined

B&A no Unc

C&B no Unc

C&Y no Unc

B&A with Unc

C&B with Unc

C&Y with Unc

ALL no Unc

ALL with Unc

All combined

Northridge (CA exposure)
Varying GM Attenuation wrt Combined 

 
         

Figure 4.  Sensitivity of loss estimates for a repeat of the 1994 Northridge earthquake in California.  The 
uncertainty is from the ground motion predictive equations, with and without the additional epistemic 

uncertainty (left).  Sensitivity to the loss estimates with the combined effect of the higher and lower additional 
epistemic uncertainty is also shown (right).  Loss changes are relative to the loss estimated from combining the 

three NGA relationships with equal weight. 
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Figure 5.  Sensitivity of loss estimates for a repeat of the 1906 San Francisco earthquake.  The uncertainty is 
from the ground motion predictive equations, with and without the additional epistemic uncertainty (left).  

Sensitivity to the loss estimates with the combined effect of the higher and lower additional epistemic 
uncertainty is also shown (right).  

 
 
 



Figure 5, however, shows much larger differences among the losses from the three NGA relationships 
for the repeat of the 1906 San Francisco earthquake.  This may be due to the fact that the GMPEs are 
less constrained for the high magnitude events due to the limited data.  The incremental effects of the 
additional higher and lower uncertainty are similar with the Northridge losses, but the total effects 
show very high sensitivity.  As before, when the losses from the higher and lower uncertainties are 
combined, the changes in the mean loss results over the base NGA relationships are relatively smaller.  
These results show that the differences between the NGA relationships are dependent on the 
magnitude and other predictor variables, such as the distance and fault rupture type. 
 
To better understand the effect of the additional uncertainty, the plot of Chiou and Youngs (2008) 
PGA attenuation for Magnitude 7.0, with and without the additional uncertainty, is given in Figure 6 
(left).  The range between the high and low estimates is significant, especially at small distances.  
Figure 6 (right) also shows the range of the Spectral acceleration (SA) for a distance = 10 km.  It can 
also be seen that the range is significant, especially close to the peak of the spectra.  The changes in 
the loss estimates are consistent with the ground motion values that are produced by the logic trees. 
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Figure 6.  PGA attenuation (left) and SA (right) for Chiou and Youngs (2008) model with median and high and 

low additional uncertainty (Mw = 7.0, Vs30=760 m/s, SA plot for 10km distance)  
 
 
The argument that the NGA relationships will not include a realistic epistemic uncertainty seems to 
hold in the 1994 Northridge scenario.  It is noted that the number of observed ground motion data in 
NGA database for the magnitude range of the Northridge earthquake is quite numerous compared to 
the data in the higher magnitude range similar to the 1906 San Francisco event.  Because of this, the 
GMPEs are well constrained for the Northridge event.  For the 1906 San Francisco event (Figure 5), it 
seems that there is significant epistemic uncertainty in loss results represented by the three NGA 
relationships before applying the additional uncertainty. Similar studies for more scenarios would be 
useful for evaluating the epistemic uncertainty in the ground motion to the loss results. 
 
4.3. Exceedance Probability Curves Generated from a Logic Tree 
 
So far, sensitivity analysis in the loss results for a couple of historical events were performed and so 
the importance of each of the logic-tree branches has not played any role as yet.  The relative weights 
of the logic-tree branches, however, are important for generating the exceedance probability curves, 
where each combination of branches in the logic tree will correspond to one EP curve. The weights 
become an important parameter when calculating the mean loss and confidence intervals around the 
mean for the EP curves.   
 
For instance, an extreme value of a parameter may be specified in a logic tree, even though the 
probability of its occurrence may be small.  This can give an indication of the range of losses due to 



uncertainty in the parameter, but the influence or weight of the logic-tree branch due to epistemic 
uncertainty in the parameter would be small to reflect the rarity of this particular outcome.   
 
Given the difference in the results for the 1906 San Francisco and 1994 Northridge earthquake 
scenarios, the sensitivity of the loss metrics for the San Francisco and Los Angeles counties are 
investigated.  Figure 7 shows the changes to the AAL and 250-year loss estimates due to uncertainty in 
the ground motion models.   
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Figure 7.  Sensitivity of the AAL and 250-year loss for L.A. County (left) and San Francisco County (right) 
 
For Los Angeles County results, the AAL and 250-year loss results follow similar patterns as the 
changes for the Northridge event.  Changes from the base NGA relationships are within 10%, while 
the changes for the models with additional epistemic uncertainty range from 35% to 70% with the 
higher uncertainty generating higher percentage changes due to the non-linearity of the loss with 
respect to the hazard.  For San Francisco County, the patterns are similar, but with a bit more 
variability among the NGA models.  Other than these general comments, it is difficult to find a 
specific pattern regarding the percentage changes for the AAL and 250-yr losses.   
 
The changes for a smaller region like the Los Angeles and San Francisco counties can be affected by 
the types of events and types of exposures that dominate a given range of return periods.  For the San 
Francisco region, the risk is dominated by large infrequent events along the San Andreas Fault in the 
same class as the 1906 San Francisco earthquake.  The exposure is also characterized by a 
concentration of high rise buildings in the downtown area that are far from the major fault zones.  For 
Los Angeles County, the risk is dominated by smaller thrust events that are nearer and affect exposure 
that is less concentrated and in a larger area.  The effect of the Los Angeles basin on the loss estimates 
also plays an important role.  This makes it important to perform the actual analysis, rather than try to 
find a way to model how uncertainties in the hazard will affect the uncertainty in the loss estimates. 
 
The Loss EP curve represents the risk of a portfolio of buildings against earthquake loss.  A single 
curve is associated with a specific model.  When considering multiple models, as in the case of using 
logic trees, each model will result in a distinct EP curve and the distribution of the curve shows the 
range of the uncertainty effect on the risk.  When the relative weights of the different models are 
considered, a distribution of the losses at different exceedance probabilities can be calculated.  The 
confidence intervals can also be calculated by fitting a parametric model to this distribution (Figure 8).   
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Figure 8. The mean and standard deviation of the exceedance probability can be evaluated given the relative 
weights of each EP curve.  The distribution of exceedance probability is used for calculating the confidence 

intervals. 
 
 
4.4. Incorporating Other Sources of Uncertainty 
 
This study investigates how the hazard (limited to the ground motion predictive equations) uncertainty 
affects the portfolio loss uncertainty.  There are many other possible sources of uncertainty within the 
hazard component (e.g., earthquake probability models) and in other components as well (e.g., 
vulnerability).  The event rates as determined by the USGS National Seismic Hazard Map 
methodology involve logic trees that include multiple model choices for different components (e.g., 
fault model) resulting in a large number of branches.  For the vulnerability component, the estimation 
of epistemic uncertainty due to different parameter assumptions (e.g., cost of repairing a damaged 
structure) is very complex due to difficulty in the estimation of different parameters of buildings and 
the correlation of those parameters for damage calculations (Jayaram, et al. 2012).  The exposure used 
in the analysis has also significant uncertainty.  Even when a single building is coded into a digital 
database, human errors can cause loss estimates to be very different, compared to one that is based on 
the most accurate information. 
 
The framework described in this paper can be extended to allow for many more alternative models as 
long as these can be implemented as branches in a logic tree with appropriate weights.  As discussed 
previously, each branch will generate one AAL, EP curve, and return period loss thresholds.  The 
resulting number of EP curves can run into the hundreds, even thousands.  The number of alternate 
models that can be analyzed is limited mostly by the available computing capacity.  These results 
provide an estimate of the uncertainty of the loss metrics.  
 
As more components are added in the framework, the range of exceedance probabilities for a given 
loss threshold can become much wider.  The resulting mean and standard deviation curves can be 
easily calculated from the large number of EP curves.  The ability to estimate the uncertainty of the 
loss metrics is very helpful in decision-making and risk management for insurance and reinsurance 
companies. 
 
 
 
 



5. CONCLUDING REMARKS 
 
This paper looks into the effects of the uncertainties in the choice of ground motion predictive 
equations on the uncertainty of the risk loss metrics for a portfolio.  The changes in the losses are a 
valuable tool to evaluate the loss uncertainties.  Incorporating the uncertainties of the event losses and 
the implementation of logic trees to consider the uncertainty of model parameters and methodologies 
in the risk framework generate metrics that can describe the level of uncertainty for a portfolio loss 
metrics.  Cases presented in this paper illustrate the utility of the methodology. 
 
The loss risk framework provides a unified way to combine the uncertainties of the different 
components of the stochastic risk model.  The number of branches of the logic trees can be small or 
large depending on the understanding of the uncertainties.  Branches can be added later, which will 
affect the relative weights of the existing alternative models.  Since the EP curve for each model is not 
affected by the addition of logic tree branches, they need not be recalculated.  Once the additional EP 
curves are available, only the mean and standard deviation of the exceedance probabilities have to be 
recalculated, which does not require much computational effort. 
 
The presented framework, while useful and adaptable, is only the first step in the evaluation of risk 
uncertainties.  More complicated simulation techniques are needed for a robust characterization of the 
secondary correlation and complex contract terms commonly found in insurance policies. 
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