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SUMMARY: 

As seismic design moves towards a performance-based methodology, the ability to predict limit states by 

analytical solution is required. Many models exist for predicting inelastic behavior, and while they are reliable 

for global limit states such as ultimate displacement, their reliability for intermediate limit states, such as strain 

and curvature, is uncertain. In order to evaluate the performance of existing models, 34 reinforced concrete 

columns from the PEER database were analyzed using lumped plasticity and distributed plasticity finite 

elements. The use of different plastic hinge length models showed drastic and random differences for varying 

limit states, and integration schemes in distributed plasticity models were found to have a significant effect on 

intermediate response parameters. Preliminary results show sensitivity to aspect ratio, axial load, and 

reinforcement ratio. The study has highlighted the need for a unified definition of limit states, as well as 

improved models that may accurately and efficiently predict inelastic behavior at varying limit states. 
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1. INTRODUCTION 

 

Seismic design of bridges is typically detailed according to capacity design principles in which the 

columns are designed as ductile members that will experience considerable deformations under the 

seismic event without losing strength. Assessment of the nonlinear force-displacement response of a 

particular column element typically involves assumptions regarding the spread of plasticity in the 

member to calculate plastic rotations and displacements based on plastic curvatures. A widespread 

method for calculating the tip deformation on cantilever columns (using an effective length concept) is 

based on the approach proposed by Park and Paulay (1975). In this approach ultimate inelastic 

displacements (u) are obtained by the addition of elastic and plastic components using a simplified 

curvature distribution along the length of the column. The final inelastic deformations are the result of 

inelastic rotations assumed to occur within a region of the column where the inelastic curvatures are 

thought to be concentrated (see Figure 1). As such, u can be calculated on the basis of moment-

curvature analyses to assess the nonlinear force-displacement response of a column. The simplicity of 

this approach has resulted in widespread use of the plastic hinge concept in seismic design. However, 

the accuracy and definition of the plastic design parameters p = (u-y) and Lp as separate components 

has generated most of the research discussion (Hines et al. 2004) and is again the source of inquiry in 

this research. 

 

The spread of plasticity in reinforced concrete (RC) members and its simplification into the notion of 

plastic hinging has been long discussed by researchers all over the world for over 40 years, covering 

fundamental and empirical approaches and addressing what seems to be all of its fundamental 

components. The role of the plastic hinge length as a key inelastic deformation parameter continues to 

this day and among the most recent enhancements are the contributions by Hines et al. (2004), Berry 

et al. (2008), and Bae and Bayrak (2008). This latest contributions continue to show that in spite of its 

long development, approaches and the calibration of this parameter against experimental data is still 



debated. A fundamental difference in current models is the way in which they give credit to the 

physical phenomena that affects spread of plasticity. The notion of the plastic hinge length Lp assumes 

a given plastic curvature to be lumped in the center of the equivalent plastic hinge. The physical 

phenomenon of inelastic actions is perhaps best defined by the length of the plastic hinge region Lpr, 

which is the physical length over which plasticity actually spreads along the element. While a direct 

relation between Lp and Lpr would be expected, this is not necessarily the case if inaccurate values for 

the plastic curvatures p and Lp are used to obtain an accurate value of p = pLp that can be calibrated 

with experiments. The accuracy of Lp and p and their separate determination is the basis for most of 

the contention on this topic. Nonetheless, it is well identified that the spread of plasticity in reinforced 

concrete elements is dependent on three distinct phenomena: moment gradient, tension shift and strain 

penetration (Park and Paulay 1975). The moment gradient reflects the transition between yield 

moment and ultimate moment in a member and is proportional to a member’s shear span. The tension 

shift effect refers to the tendency of flexural forces to decrease only minimally over a certain distance 

over a critical section until these forces are transmitted to the compression zone by inclined struts. 

This effect invalidates the assumption that plane sections remain plane. The strain penetration effect 

refers to the fact that longitudinal bars can reach significant inelastic levels some distance into the 

footing or bent-cap. In spite of the recognition of these effects there is still no resolution in their 

integrated treatment for assessing the spread of plasticity. 
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Figure 1. Schematic of the plastic hinge concept 

 

Debate over the determination and use of the plastic hinge length concept and other plastic design 

parameters, such as plastic rotation and plastic curvature, has recently gained attention due to the need 

to assess the nonlinear force-deformation response of reinforced concrete members for an associated 

damage limit states for use in performance-based design (PBD). Relevant research that has contributed 

significantly towards improving the role of the plastic hinge in the determination of inelastic 

performance levels is that of Hines et al. (2004) and Barry et al. (2008). Hines et al. (2004) addressed 

the determination of Lp from first principles and proposed two models that physically account for the 

effect of spread of plasticity. A “bond stress model” suitable for wide members (e.g., walls) and a 

“shear crack” model that addresses moment gradient (and thus slender members) where proposed. The 

models are elegant in their relation to the physical plastic deformations and they are inherently linked 

to curvature demands on the element. However, the model’s performance was essentially assessed 

only with respect to ultimate displacement calculation and the “shear crack” model (of most relevance 

to slender columns) was only compared to two experiments. In addition the models are relatively more 

complex than commonly used phenomenological expressions. Barry et al (2008) developed enhanced 

phenomenological plastic hinge models and calibrated them against diverse limit states (Lehman et al. 

2004). The use of the models in lumped plasticity analyses is shown to have good results but only 

against peak lateral displacements. Further, the model is not rigorous enough to be able to account for 

the effects of tension shift, and its calibration against local damage parameters (i.e., curvature or 

strains) was not done since data was not available (Lehman et al. 2004). In spite of the noted research 



advancement, questions still remain about the adequacy of available plastic hinge formulations and the 

analytical and numerical methods that incorporate them. One is: is it over conservative or under- 

conservative to predict the correct length of the plastic hinge? One other is: how much does this error 

actually matter in evaluating the response of bridges? Finally: for which applications does the error 

become significant either in terms of design or assessment? This paper summarizes the first phase in 

an effort to find answers to these questions by evaluating the performance of well-known plastic hinge 

models against archived experimental data and in assessing the performance of finite element 

formulations for evaluating nonlinear response. 

 

 

2. NUMERICAL MODELING  

 

Several models have been proposed to predict the inelastic behavior of reinforced concrete columns 

under seismic demand. Such models can generally be placed into two categories, lumped plasticity and 

distributed plasticity approaches. The lumped plasticity approach is advantageous due to its simplicity 

for hand calculations and its computational efficiency when used in the finite element method. The 

distributed plasticity approach, however, is convenient for defining limit states for PBD since it has 

the ability to capture local behavior at intermediate element lengths and takes the spread of plasticity 

along an element length into account.  

 

The performance evaluation of plastic hinge models on cantilevered columns was done by comparing 

experimental deformation data at different limit states with the predictions from numerical models 

created in the OpenSees finite element platform (OpenSees 2011). Columns were modeled using fiber-

based lumped plasticity and distributed plasticity beam-column elements. Lumped plasticity analyses 

are completed in OpenSees by using the “beamWithHinges” element, which uses a modified Gauss-

Radau integration scheme. This element uses a flexibility formulation and assumes all inelastic 

behavior is concentrated over a user-defined length at the element ends. Distributed plasticity analyses 

are possible in OpenSees using a “nonlinearBeamColumn” element. This element uses a flexibility 

formulation and various integration schemes are available in order to capture the changing nonlinear 

distribution of element section deformations. The control of sub-elements and integration points 

allows capturing of the spread of plasticity along the element length. 

 

Fiber sections consisted of a confined concrete core defined by a Chang and Mander (1994) concrete 

model (OpenSees material Concrete07), as well as an unconfined concrete cover defined by a zero 

tensile strength concrete model (OpenSees material Concrete01). The longitudinal reinforcing steel 

was modeled using the OpenSees material model ReinforcingSteel. The parameters given in Table 1 

were used to define the stress-strain curve for the steel model. Yield strength was the only parameter 

given in the PEER database; therefore other inputs were selected based on commonly observed values. 

 
Table 1. Assumed reinforcing steel material properties in finite element modeling 
 

Input Parameter Assumed Value 
Yield Strength (fy) Given in documentation (varies) 

Ultimate Strength (fu) 1.5fy 
Elastic Modulus of Steel (Es) 29,000 ksi 

Elastic Modulus after Strain Hardening (Esh) 1633 ksi 
Strain at Hardening (εsh) 0.0036 

Ultimate Strain (εsu) 0.1 

 

All monotonic analyses were performed using a displacement control integrator, with yield and 

ultimate values as target displacements. Yield and ultimate displacements were calculated from 

parameters found in the sectional analysis for each column, using the approach proposed by Priestley 

et. al. (1996). Experimental yield displacement was not given in the PEER database and was therefore 

calculated. While experimental values for ultimate displacement are available in the PEER database, 

these values were not used in the analysis as the target displacement. Rather, ultimate displacement 

was calculated based on a failure criteria. 



3. EVALUATION OF PLASTIC HINGE DESIGN MODELS 

 

A statistical analysis was performed on several columns from the PEER Structural Performance 

Database (PEER 2011) to evaluate the performance of four common plastic hinge expressions in 

predicting various limit states for implementation in performance-based seismic design. Evaluation 

was done by conducting monotonic analyses with lumped plasticity finite element models. 

 

3.1. Column Selection 

 

Limit state prediction was compared for various plastic hinge models by analyzing 34 circular 

columns from the PEER Database (PEER 2011). The database contains a total of 163 circular 

columns, therefore in order to be considered relevant to this study, columns were chosen according to 

specific criteria. The criteria for choosing columns for this work are as follows: 

 Column failure was of the flexure type.  

 Columns must have an aspect ratio (length/diameter) greater than 3. 

 Columns must have well-confined flexural hinges.  

 Lastly, columns without recorded limit state data were eliminated. 

The resulting 34 columns used in this study are listed in Table 2. The table presents information on 

geometry, material properties, and experimental displacements at different limit states. 

 
Table 2. PEER Database columns used in limit state analyses (PEER 2011) 

Reference Unit L (in) L/D P/f'cAg (%) ρl ρeff s/db 

Davey 1975 No. 2 68.9 3.5 12.07 0.0271 0.0461 3.53 

Munro et. al. 1976 No. 1 107.5 5.5 0.34 0.0271 0.0948 1.85 

Ng et. al. 1978 No. 3 36.6 3.7 33.95 0.0230 0.2173 0.83 

Ang et. al. 1981 No. 1 63.0 4.0 20.81 0.0256 0.0881 2.50 

Stone et. al. 1986 Model N6 59.1 6.0 10.49 0.0196 0.1283 2.07 

Stone et. al. 1989 Full Scale Flex. 359.8 6.0 6.85 0.0200 0.0826 2.07 

Watson & Park 1989 No. 10 63.0 4.0 52.76 0.0192 0.0743 5.25 

Kowalsky et. al. 1996 FL1 143.9 8.0 29.65 0.0362 0.1176 4.79 

Kowalsky et. al. 1996 FL2 143.9 8.0 27.13 0.0362 0.0724 3.21 

Kowalsky et. al. 1996 FL3 143.9 8.0 28.11 0.0362 0.1115 4.79 

Kunnath et. al. 1997 A2 54.0 4.5 9.44 0.0204 0.1439 2.00 

Kunnath et. al. 1997 A3 54.0 4.5 9.44 0.0204 0.1439 2.00 

Kunnath et. al. 1997 A4 54.0 4.5 8.56 0.0204 0.1176 2.00 

Kunnath et. al. 1997 A5 54.0 4.5 8.56 0.0204 0.1176 2.00 

Kunnath et. al. 1997 A7 54.0 4.5 9.26 0.0204 0.1272 2.00 

Kunnath et. al. 1997 A8 54.0 4.5 9.26 0.0204 0.1272 2.00 

Kunnath et. al. 1997 A9 54.0 4.5 9.35 0.0204 0.1284 2.00 

Kunnath et. al. 1997 A10 54.0 4.5 10.14 0.0204 0.1546 2.00 

Kunnath et. al. 1997 A11 54.0 4.5 10.14 0.0204 0.1546 2.00 

Kunnath et. al. 1997 A12 54.0 4.5 10.14 0.0204 0.1546 2.00 

Hose et. al. 1997 SRPH1 144.1 6.0 14.82 0.0266 0.0965 2.56 

Henry 1998 415p 96.0 4.0 12.04 0.0149 0.0857 2.00 

Henry 1998 415s 96.0 4.0 6.02 0.0149 0.0428 4.00 

Lehman et. al. 1998 407 96.0 4.0 7.22 0.0075 0.1028 2.00 

Lehman et. al. 1998 415 96.0 4.0 7.22 0.0149 0.1028 2.00 

Lehman et. al. 1998 430 96.0 4.0 7.22 0.0302 0.1028 2.00 

Lehman et. al. 1998 815 192.0 8.0 7.22 0.0149 0.1028 2.00 

Lehman et. al. 1998 1015 240.0 10.0 7.22 0.0149 0.1028 2.00 

Calderone et. al. 2000 828 192.0 8.0 9.06 0.0273 0.113 1.33 

Calderone et. al. 2000 1028 240.0 10.0 9.06 0.0273 0.113 1.33 

Kowalsky & Moyer 2001 1 96.0 5.3 4.31 0.0207 0.1427 4.01 

Kowalsky & Moyer 2001 2 96.0 5.3 4.12 0.0207 0.1365 4.01 

Kowalsky & Moyer 2001 3 96.0 5.3 4.44 0.0208 0.1478 4.00 

Kowalsky & Moyer 2001 4 96.0 5.3 4.16 0.0208 0.1385 4.00 



3.2. Plastic Hinge Design Models 

 

Four plastic hinge design models were chosen to compare limit state prediction for performance-based 

design (PBD). The models selected represent those most commonly used in practice, as well as 

recently developed models created to be better suited for PBD or under extreme design parameters. 

The four plastic hinge expressions are summarized in Table 3.  

 
Table 3. Plastic hinge expressions used in finite element analyses 

 

Reference Expression 
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Bae and Bayrak (2008)     (   
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Corley (1966)          

 

The expression by Priestley is the most well-known and widely used equation consisting of a bending 

component and strain penetration component (Priestley et al. 2006). The expression by Berry et al. 

(2008) is one more recently developed after similar studies of the PEER database. The expression was 

calibrated to reduce the error in predicting the displacement at ultimate, the onset of spalling, and the 

onset of bar buckling (Berry 2008). Error was calculated based on analyses performed using plastic 

hinge expressions by Priestley and by Corley. The plastic hinge expression proposed in the study by 

Berry performed well compared to monotonic force-displacement envelopes. It is therefore the 

intention to test this expression for other intermediate limit states as well as performance under cyclic 

loading. Similar to the Priestley equation, the one proposed by Berry et al. includes both a bending and 

strain penetration component. The expression proposed by Bae and Bayrak (2008) was formulated to 

solve discrepancies between previous plastic hinge expressions, specifically to solve sensitivity to 

large axial loads. The expression by Bae and Bayrak does not include a strain penetration component. 

Therefore one was added to ensure that the models were comparable. The expression by Corley (1966) 

is one of the oldest plastic hinge length expressions, yet due to its simplicity is of interest to the study. 

Lumped plasticity approaches are used due to their simplicity, therefore if more complex plastic hinge 

expressions do not necessarily provide more accuracy, it is possible that the Corley equation is 

sufficient for seismic analysis. The Corley equation does not contain a strain penetration component; 

however one was not added to the expression for analysis since it is assumed the simplified expression 

is meant to include all components of inelastic behavior as proposed. 

 

3.3. Limit State Definitions 

 

Limit states predicted in the OpenSees analysis and compared to the experimental data in the PEER 

database include: the displacement at concrete core crushing, significant cover concrete spalling, 

longitudinal bar buckling, longitudinal bar fracture and ultimate displacement/failure. Experimental 

data for each of these limit states is recorded in the PEER database and is based on observation. In 

order to predict the onset of each of these limit states in the analyses, strains were defined for each 

limit state at which these important damage states are thought to occur. The displacement 

corresponding to each was then compared to the experimental data. A summary of how the strain at 

various limit strains was predicted is given below: 

 

3.3.1 Crushing 

In this study, crushing is defined as the instant when the extreme compression fiber of the concrete 

core reaches the maximum compressive strain as defined by the Chang and Mander (1994) Concrete 

Model. The crushing strain is computed with Equation (3.4). This model takes cyclic behavior of 



concrete into account. In experimental studies, crushing typically refers to the point when the inside of 

the steel spiral is fully exposed (Lehman 2004), yet this may vary between researchers. 

 

   
       [   (

   
 

  
 ⁄   )]        (3.4) 

 

3.3.2 Spalling 

In this study, significant spalling is defined at the instant when the unconfined concrete strain is 0.005. 

It was assumed that unconfined concrete typically begins to spall at a strain of about 0.002 therefore a 

strain of 0.005 would indicate significant spalling. To obtain this point in the OpenSees analysis, the 

equivalent concrete core strain was calculated according to Equation (3.5); where D is the column 

diameter and cc is the distance from the concrete cover to the longitudinal reinforcement. 

Experimentally, significant spalling is completely based on observation and varies with individual 

perception. This limit state is therefore very ill defined it is expected that error in analytical 

comparison will be high. 

 

      
           

 
         (3.5) 

 

3.3.3 Bar Buckling 

Longitudinal bar buckling is defined according to the equation proposed by Berry and Lehman (2008). 

They proposed that the onset of bar buckling is best predicted as a function of the effective 

confinement ratio, ρeff. The resulting equation is shown in Equation (3.6). The constants, X1 and X2 

were calibrated using experimental data from several PEER test columns and determined to be equal 

to 0.05 and 0.224, respectively. These columns were all tested under cyclic loading. The values of the 

constants in the expression by Berry and Lehman change depending on the plastic hinge length of the 

column. For the purposes of this study however, the optimal constants recommended for the optimal 

plastic hinge by Berry et al. were used for all columns, regardless of plastic hinge expression used for 

the analysis. The reason is that the different constants are used to resolve error, which defeats the 

purpose of this study. Since the Berry model is proposed as the most accurate, these constants are used 

for each analysis. 

 

                       (3.6) 

 

3.3.4 Fracture 

Longitudinal bar fracture is defined as the point when the tensile strain in the extreme tensile steel 

fiber reaches 0.1. It is well confirmed that steel fractures at a strain between 0.1-0.15, therefore the 

lower limit was used. Since fracture would also typically indicate failure of a column, a steel strain of 

0.1 is also used as one of the three failure criteria in the analyses. 

 

3.3.5 Ultimate/Failure 

Failure or ultimate conditions defined in the OpenSees analysis are based on the first occurrence of: 

i. Concrete Failure: The column is said to have failed by concrete failure if the strain in the extreme 

fiber of the concrete core reaches ultimate strain (εcu) as defined by the Chang and Mander 

concrete model. This expression is given in Equation (3.7). 

ii. Steel Failure: The column is said to have failed by steel failure if the strain in the extreme fiber of 

the reinforcing steel reaches ultimate strain (εsu) as defined in the previous section as 0.1.  

iii. 20% Capacity Loss: The column is said to have failed by capacity loss if the load carrying 

capacity of the structure falls below 80% of the maximum force as determined from the element 

analysis before reaching failure of concrete of steel as described above.  

 

                  
  

   
 ⁄          (3.7) 



3.4. Results 

 

The predicted displacement at several limit states was compared to the recorded experimental results 

to obtain several statistics.  First, the mean error and coefficient of variance was calculated for each 

plastic hinge model at different limit states by comparing analytical to experimental displacement. 

Values are given in Table 4. Statistics are further sorted by aspect ratio to determine if high aspect 

ratios (L/D>8) show higher error. As seen in the table, any such trend is random among limit states. 

 
Table 4. Mean error and coefficient of variance for prediction of limit states using different plastic hinge models 

 
 

The predicted and experimental drift ratios for all limit states were compared graphically by plotting 

the response from all the analyses and finding a least-squares regression line for the data. Plots for the 

bar buckling limit state are shown in Figure 2. The crushing and spalling limit states had poor 

predictions for nearly all models. Spalling prediction was especially poor, most likely due to the fact 

that concrete strains are difficult to measure and thus this limit state is typically empirically assessed. 

Buckling, fracture and ultimate are limit states were expected to give more accurate results since there 

is less ambiguity on their definition. While the models performed better for these limit states, 

performance was still poor, indicating little reliability for PBD implementation. None of the plastic 

hinge models were able to lead to accurate results throughout all limit states. However, the Berry et al. 

model generally had the best performance.  

 

 

4. EVALUATION OF NUMERICAL METHODS 

 

The performance of common numerical methods for the prediction of intermediate limit states and the 

effect of aspect ratio was studied by conducting detailed analyses on four of the test columns in the 

database. The chosen columns had aspect ratios between 4 and 10 and conform to modern seismic 

design standards for reinforced concrete structures. Their geometric and reinforcement properties are 

given in Table 5. The columns were analyzed with OpenSees using the lumped and distributed 

plasticity elements.  Monotonic and cyclic analyses were performed. 

 

4 ≤ L/D < 8 L/D ≥ 8 Total 4 ≤ L/D < 8 L/D ≥ 8 Total

Priestley 0.4315 0.3204 0.4037 0.8123 0.6368 0.7921

Berry 0.2936 0.1629 0.2566 0.6783 0.3622 0.7043

Bayrak 0.2996 0.2474 0.2697 0.6787 0.4466 0.7054

Corley 0.3453 0.1491 0.3008 0.6740 0.5179 0.7422

Priestley 0.3782 0.1140 0.3182 0.6465 1.0860 0.7783

Berry 0.4220 0.1641 0.3634 0.5832 0.5529 0.6738

Bayrak 0.4993 0.2592 0.4447 0.4841 0.6139 0.5505

Corley 0.4153 0.1789 0.3616 0.5951 0.6098 0.6723

Priestley 0.4684 0.1935 0.4206 0.7069 0.5708 0.7620

Berry 0.2330 0.2008 0.2202 0.7268 0.3877 0.7356

Bayrak 0.3356 0.5252 0.3722 0.4295 0.0378 0.3956

Corley 0.2559 0.3076 0.2701 0.7957 0.2844 0.6837

Priestley 0.6794 0.5655 0.6587 0.5133 0.0653 0.4791

Berry 0.2915 0.0282 0.2162 0.5496 0.2255 0.8034

Bayrak 0.2720 0.4471 0.3016 0.4749 0.0295 0.4425

Corley 0.3324 0.0964 0.2648 0.4782 0.5668 0.6977

Priestley 0.8124 0.5654 0.7484 0.6063 0.3872 0.5984

Berry 0.3676 0.1687 0.3161 0.8646 0.6857 0.9214

Bayrak 0.2699 0.5541 0.3436 0.8672 0.2173 0.7099

Corley 0.4666 0.1674 0.3890 0.5999 0.6450 0.7169

CRUSHING L.S.

Lp Model
Mean Coef. Var.

SIGNIGICANT SPALLING L.S.

BAR BUCKLING L.S.

BAR FRACTURE L.S.

ULTIMATE L.S.

Error of Analytical v. Experimental Displacements



  

  

Low Aspect Ratio: 4 ≤ L/D ≤ 8 High Aspect Ratio: L/D ≥ 8 

Figure 2. Drift predictions for longitudinal bar buckling limit state 

 
Table 5. Column properties for evaluation of numerical analysis and slenderness effects  

Column Reference Diameter L/D Longitudinal Reinf. Cover Transverse Reinf. P/f’cAg 

415 (Lehman 1998) 24" 4 22 # 5, ρl =1.5% 0.75" #2 spiral @ 1.25", ρs=0.70% 7.22% 

SRPH1 (Hose 1997) 24" 6 20 # 7, ρl=2.7% 1" #3 spiral @ 2.25", ρs=0.86% 14.82% 

815 (Lehman 1998) 24" 8 22 #5 , ρl=1.5% 0.75" #2 spiral @ 1.25", ρs=0.70% 7.22% 

1015 (Lehman 1998) 24" 10 22 #5, ρl=1.5% 0.75" #2 spiral @ 1.25", ρs=0.70% 7.22% 

 

4.1. Monotonic Analysis Results 

 

Monotonic analyses were performed on each column using the lumped plasticity elements with 

different plastic hinge definitions. The monotonic envelope from each model compared to the 

experimental hysteretic response is shown in Figure 3. Also plotted on each graph is the displacement 

at which each of the limit states occurred. It is seen that the Priestley model generally overestimates 

limit states, while the Bayrak model typically underestimates them. The Berry and Corley models are 

somewhere in between, with the Berry model typically showing the best comparison to experimental 

data. It is also seen that the prediction of global response is best for the aspect ratio 6 column, with 

decreasing accuracy with aspect ratios above and below this. The most slender column does in fact 

show the highest error in prediction, as expected. 

 

4.2. Cyclic Analysis Results 

 

A cyclic analysis was also performed on each of the above columns using both lumped plasticity and 

distributed plasticity elements. Since the Berry model gave the best results of the plastic hinge models 

in the monotonic analyses, it was chosen as the representative model for comparing lumped plasticity 

elements to the distributed plasticity analyses. A comparison of both models to the experimental 

results of each column is given in Figure 4(a) for the SRPH1 column. It is seen that both models give a 

very similar prediction to each other.  
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Figure 3. Performance of a lumped plasticity finite element model in assessing intermediate limit states 

 

 

  
a) Hysteretic force-deformation response b) Curvature profiles at  = 4 

Figure 4. Cyclic analysis results for SRPH1 column using lumped and distributed plasticity models 
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Accuracy in prediction to the global experimental behavior, however, is not improved upon by using 

the distributed plasticity element. The Berry plastic hinge model seems to better predict ultimate 

displacement, however comparing local behavior such as curvatures and strains is of interest to 

determine which, if any, model is most accurate. Such comparison was completed for the Hose 

SRPH1 column. Figure 4(b) shows the curvature profile for the SRPH1 column at a displacement 

ductility level of 4. Compared in this figure are results from a lumped plasticity element with the 

Priestley plastic hinge length model and a distributed plasticity model with 3 elements and 3 

integration points per element. The data shows that none of the models is very accurate at predicting 

the local response of this column.  

 

 

5. CONCLUSIONS 

 

Careful evaluation of commonly used plastic-hinge models shows a wide scatter against experimental 

data and assessment parameters computed using these models do not comply well with the intended 

damage level. This is more evident when applied to limit states other than ultimate – the state at which 

most models were calibrated. The error in predicting inelastic behavior of reinforced concrete columns 

seems to increases with increasing aspect ratio. This trend is apparent for all numerical techniques 

studied, including lumped plasticity and distributed plasticity models. However, more research is 

required to make a final statement on the issue of slenderness. 
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