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SUMMARY: 
This paper presents the design of a mass rig system for shake table testing of slender columns. In the presence of 
P-delta effects slender columns experience destabilizing moments that can lead to the instability of the test 
specimen, thus requiring additional safety remediation during testing. In order to address safety and economic 
concerns, the inertial mass will be placed on a convex surface outside of the shake table and the transfer of the 
inertial forces will be realized by connecting the top of the columns to the inertial mass by a rigid link. Design of 
the convex surface was achieved by ensuring that the equations of motion for the inertia mass on the convex 
surface lead to the same solution as if the mass was placed directly on the column. This paper presents the 
principles used in deriving the expression for the convex surface alongside with analytical validations. 
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1. INTRODUCTION 
 
The research described in this paper is part of a project that focuses on shake table testing of slender 
reinforced concrete bridge (RC) columns. The tests will provide one of a kind link for investigating 
the effects that loading protocol and P-delta have on the plastic hinge region and the damage levels of 
slender RC columns. Because the seismic performance of slender RC columns is largely affected by P-
delta effects, special considerations were undertaken in setting up a mass rig system. A literature 
review shows that three different mass rig set ups have been used for shake table tests. In approach the 
mass is directly connected and placed to the top of the column. One of the main disadvantages of this 
setup is that the mass needs to be removed and reinstalled between tests leading to delays. 
Additionally, considerations must be ensured for safety during and after testing in the occurrence of 
large displacements, or a likely collapse of the specimen. Other systems have averted this 
disadvantage by placing the mass on a tower that is either placed next to the test specimen on the 
shake table or on a tower located outside of the shake table. However, because the mass is placed on a 
flat surface these systems have the main disadvantage of not being able to reproduce or properly 
quantify P-delta effects on the test specimens. 
 
The need to evaluate P- delta effects on the seismic response of slender RC columns led the research 
team to design an alternative test setup that places the mass on a steel tower outside of the shake table 
but the mass moves on a convex surface. The surface profile is designed to properly simulate the 
directional effects of the gravity loads. In addition, the axial load effects on the internal response of the 
RC columns will be achieved by internally post-tensioning the test specimens. This construction detail 
will insure the effects of axial load on the flexural capacity of the section. The curved path was 
designed by ensuring that the equations of motion for the inertia mass on the convex surface led to the 
same solution as if the inertia mass was placed on top of the columns. Interfacing the principles of 
conservation of momentum with conservation of energy in Lagrangian mechanics with state-space 



phase analysis led to a simplified derivation of the equations of motion and its subsequent 
implementation in the design of the surface profile. The paper presents a brief description of the 
principles used in deriving the expressions for the design of the convex surface alongside with 
analytical validations.  
 
 
2. MOTIVATION FOR THE RESEARCH 
 
Much research has been conducted to date on calibrating/validating the plastic-hinge length in 
reinforced concrete (RC) columns. Three of the most recent models for plastic-hinge length are those 
proposed by Hines et al. (2004), Berry et al. (2008), and Bae and Bayrak (2008). Among other 
variables, these models have certainly recognized the importance of spread of plasticity in computing 
the plastic-hinge length; however, some salient questions remain. One is: is it over conservative or 
under- conservative to predict the correct length of the plastic hinge? One other is: how much does this 
error actually matter in evaluating the response of bridges? Finally: for which applications does the 
error become significant either in terms of design or assessment? Certainly the last question deals with 
conditions for which P-delta effects can play a significant role in the study of the instability of slender 
RC columns. 
 
Evaluation of RC bridge columns using one of these models shows that reducing the plastic-hinge 
length leads to underestimating damage, and that the level of error prediction in assessing damage is 
greater for RC slender columns. Meanwhile, careful evaluation of commonly used plastic-hinge 
models shows a wide scatter against experimental data and it can be shown that assessment parameters 
computed using these models do not comply reasonably well with the intended damage level. This is 
more evident when applied to limit states other than ultimate – the state at which most models were 
calibrated. These issues are concerning because slender RC bridge columns are often part of complex 
and critical components of transportation interstate systems in dense urban areas, and any unintended 
damage to these columns can lead to severe damage and disruption. As such, it is necessary to 
properly include the P-delta effects on the shake table testing of slender RC bridge columns. 
  
2.1. Shake table tests of RC bridge columns 
 
As previously discussed, many shake table tests on cantilever RC columns have been conducted by 
placing the inertial mass on top of the column and subjecting it to the intended ground motion. Among 
these are the shake table experiments performed on cantilever RC columns by MacRae et al (1994), 
Mahin et al. (2006), Sakai et al. (2006) [shown in Figure 1(a)], Mosalam et al. (2002), and a recent 
full-scale test Guerrini et al. (2011)  [shown in Figure 1(b)]. Although placing the mass on top of the 
test specimen has been widely used, its use to the study slender columns can lead to major safety 
concerns. The concern increases when high inertial and axial loads are being applied to the test 
specimen or the performance of the column is being investigated to high damage levels. As seen in 
Figure 1(b) the configuration and size of the inertial mass can be rather large as compared to the test 
specimen, which can also lead to rotational deformation demands at the top of the column. 
 
As shown in Figure 1(c), Laplace et al. (1999) proposed a different setup in which the inertial mass 
was placed next to the shake table. This mass rig system is basically a horizontally constraint-free 
mechanism to provide the inertial dynamic loading during the testing procedure. The axial load 
applied to the specimen is provided through a steel spreader beam that was attached to the top of the 
column. The column top displacement is transferred to the mass with a rigid link. Restraining cables 
are provided to limit the translation of the inertial mass to reduce safety concerns when a test specimen 
fails. Another advantage of this system is that it also allows specimens to be removed and replaced 
easily making the installations faster and more convenient. 
 
Although this mass rig system removes several concerns related to shake table testing of cantilever 
columns, some issues remain that are related to the proper representation of P-delta effects. This 
indeed was observed during the experiments of Laplace et al. (1999), which showed that the 



experimentally derived P-delta force was lower than predicted for the condition when the mass is on 
top of the column. It is logically anticipated that this inaccuracy will be amplified when the axial load 
or column aspect ratio increases, causing more significant P-delta effects. 
  

 
a) UC-Berkley mass rig system 

Mahin et al. (2006) 
b) UC-San Diego mass rig system 

Guerrini et al (2011) 
c) UN-Reno mass rig system 

Laplace et al. (1999) 
 

Figure 1: Different inertial loading systems used in shake table experiments on RC cantilever columns 
 
 
3. DEVELOPMENT AND SOLUTION OF THE EQUATIONS OF MOTION 
 
In the test setup developed for this research the inertial mass is placed on a convex surface outside of 
the shake table and the transfer of inertial forces is achieved by connecting the top of the column to the 
inertial mass by a rigid link. A schematic of this setup is shown in Figure 2(a). Based on this setup the 
motion of mass, m, will take place along a curved path of radius, R, and the the application of 
Newton’s second law in deriving the equations of motion will be a rather complex and cumbersome 
task since the expressions for all known forces must be properly quantified and expressed in vector 
notation. As such, Lagrangian mechanics was used to simplify the derivation of the equations of 
motion. This approach is more suitable for this research because it is based on: (1) energy, which is a  
scalar quantity leading to a series of simpler approaches in deriving the equations of motion, and (2) 
generalized coordinates rather than the limiting rectangular, polar, or spherical coordinates. 
 

                         
 a) System in its Original Configuration  b) System in its Deformed Configuration 

 
Figure 2. System Schematics in its Original and Deformed Configurations  

 
3.1. Position Equations 
 
The expressions necessary for developing the Lagrangian and the rationale for the development of the 
Lagrangian equations are discussed next. The position of the mass m, in its original and deformed 
configurations can be easily described in terms of polar coordinates and other relevant expressions. 
Referring to Figure 2(b), segment bb   is defined as the chord length, C, of angle t along the curved 
path and is given by:  
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In Eq. (3.1), t is the angle between segments ob  and bo  , R is the radius of the curved surface, b 
defines the original position of mass m, and b  defines the displaced position of mass m. By the law of 
cosines the distance of segment ba   is given by: 
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Where  is the angle between line segments ab  and bb  , xC is the relative horizontal displacement of 
the column, and xg is the absolute displacement at the base of the shake table. Solving for xC + xg in 
Eq. (3.2) one obtains: 
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In this last expression the angle  is related to t by =-t/2. As such, the absolute horizontal and 
vertical displacements of mass m are, respectively: 
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Where  is the positive angle formed by line segment bb   and the horizontal line ab . Differentiating 
these last equations with respect to time one obtains: 
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In order to further simplify the complexity of the equations of motion the following equalities were 
employed: 
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Eq. (3.8) can be solved graphically for  and it is nearly 1.00 for most of the values of , where  is 
graphically depicted in Figure 3. Substituting Eq. (3.1) into Eq. (3.5) and solving for xC leads to:  
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3.2. Energy equations 
 
Assuming the mass of the tested column and rigid link, L, are relatively smaller than mass m, and 
using the position equations, the kinetic energy, T, of the system is given in terms of Eq. (3.10). Per 
Eq. (3.11) the potential energy, U, of the system consists of the changes in the potential energy stored 
in the deformed column and the changes in the gravitational potential of mass m. 
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Assuming friction losses due to motion of the mass, m, along the curved path, and due to the 
connections of rigid link to the column and mass are related the velocity at the tip end of column, the 
energy loss due to the damping energy, D, of the system is computed per Eq. (3.12). 
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where c is the damping constant, and for this work can be related to a small effective damping ratio of 
=2% 
 
3.3 Lagrangian equations of motion 
 
Finally the Lagrangian is: 
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In terms of the Lagrangian, the classical equations of motion are given by the Euler-Lagrange 
equation: 
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Substitution of Eqs. (3.9), (3.10), (3.11), and (3.12) into Lagrange's Eq. (3.14) leads to the sequence of 
equations that will be used to formulate the equations of motion of mass m along the curved path: 
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These equations lead to the following 2nd order nonlinear differential equation of motion: 
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Because  is the variable of integration, t must be replaced by t =+, where  is the variable of 
integration and  is the angle resulting solely from the displacement of the shake table, as is 
schematically shown in Figure 4. It is important to emphasize that these equations are nonlinear due to 
the presence of the trigonometric functions. Furthermore, they are coupled because of the coupling of 
 and  in the term    1cos . This poses another challenge in the solution of the problem, and 

the approach used to solve the equations of motion is outlined next. 
 
3.3. Numerical solution and response of the system 
 
The equations of motion depicted in Eq. (3.18) were solved by introducing the state vector shown in 
Eq. (3.19), in terms of the state variables x1 and x2. Employing this state space it is possible to obtain 
the system of first order nonlinear differential equations expressed in Eq. (3.20). Solutions in terms of 
the state variables x1 and x2 can be obtained by solving the system of first-order nonlinear differential 
equations numerically using a subroutine in MATLAB. The MATLAB ODE113 solver was 
employed for the numerical solution because problems of the type given by Eq. (3.20) are 
computationally intensive problems and are best solved using this solver.  



 
Figure 3. Graphical Representation of   Figure 4. Relations for t as a Function of  and  

 
Within the solution algorithm the displacement at the tip of the column is computed iteratively using 
the base displacement, ݔ௚, and base velocity, ݔ௚ሶ , at each increment. As previously stated, in the first 
iteration  was assumed equal to 1.00 and in subsequent iterations  was estimated based on Eq. (3.8). 
The solution algorithm has been numerically evaluated using the El Centro, CA (1940) record, for 
which the acceleration, velocity and displacement time histories are presented in Figure 5.  
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 a) Base Acceleration, xሷ ୥  b) Base Velocity , xሶ ୥  c) Base Displacement, ݔ௚ 
 

Figure 5: Magnitude 7.1 El Centro Earthquake Record at the USGS station 5054 
 
 

4. TEST SETUP DESIGN 
 
The surface profile is designed to properly simulate the directional effects of gravity loads. While the 
proposed test setup is based on the concept of the UNR mass rig system, in this setup, the mass is 
travelling on a predefined arched path. A schematic diagram for the rig system is presented in Figure 
6(a). As shown in Figure 6(b) the inertial mass consists of steel plates that are bolted together and 
attached to a steel platform that moves along the arched path using a rollercoaster type connection. 
Different number of steel plates can be easily accommodated to meet the loading requirements and as 
such changing the period of the system.  
 
As shown, the rollercoaster type connections in each rail consist of three sets of wheels capable of 
holding the mass from jumping over the arched path. The arched path is created by two tubes that are 
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manufactured to a smooth finish necessary to minimize the amount of resistance when the wheels 
move across the tubes. The mass rig system is currently being experimentally evaluated on elastic 
specimens to within large elastic drift demands. The specimen used to investigate the feasibility of this 
system will be a thin plate made of ASTM Steel 304, which provides high yield stress and can be used 
for a large range of elastic displacements. Further details for the construction of mass rig system are 
provided in Figure 6. The experimental results and comparisons with the analytical solution (presented 
in this paper) will be available by the time of the conference and presented at that time. 
 

 
a) P-delta Mass Rig system 

 
b) Inertial Mass in Rig System 

 
Figure 6: Specifications of the P-delta Mass Rig System 

 
4.1. Response spectrum analysis 
 
In order to select a single radius that suits the majority of testing cases, a series of analysis were 
performed with different radiuses and based on the results, a radius of 170 in. was found to be the best 
fit for the selected range of applications. The single radius selection was achieved by comparing the 
difference in the analytical results “with” and “no” P-delta transformations on the stiffness matrix. 
Solution to the equation of motion given by Eq. (3.20) was repeated for radiuses in 10in. increments, 
considering the fact that for dimensions of this test setup, an increase of 10in. in radius for the curve 
results in an increase of 0.04in. for the elevation at the midpoint of the rails. The 1940 El Centro 
earthquake time history record (shown in Figure 5) was selected for the analyses presented in this 
section. This earthquake is well suited for this research because, as it can be seen from Figure 7, its 
displacement response spectrum shows a wide range of scenarios that must be accounted for when 
selecting the best fit radius.  
 

 
 

Figure 7: Spectral Displacement of El Centro Earthquake Record 
 
Referring again to Figure 7, it is essential to avoid constructing tests with a natural period less than 0.9 
seconds as a small error in predicting the natural period may actually lead to a large fluctuation in the 
peak response of the structure during testing. For the majority of testing cases and within the range of 
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natural periods from 1.35s to 2.0s the displacement response spectrum of the El Centro record presents 
some conditions that make it suitable in selecting the best fit radius for this research. Within this 
context, the case numbers depicted in Figure 7 are discussed next. 
 
A set of twelve load cases were selected for the analyses with the main objective of varying the natural 
period of the structure and selecting the best curve fit for the construction of the curved path. These 
load cases were selected based on varying the number of steel plates for the inertial load as depicted in 
Figure 6(b). Table 1 presents in the second column the load values in pounds for each of the load cases 
(i.e., cases 1 to 12) and the corresponding peak results from: (1) the analysis considering No P-delta 
effects, (2) solving Eq. (3.20) for a large radius of 4800 in., (3) the analysis considering P-delta 
effects, and (4) solving Eq. (3.20) for a radius of 170 in.  
 
Table 1: Spectral Displacements for Analyses w/ and w/o P-delta Effects 

Load Case Load (lbs) No P-delta (in) Radius=4800in (in) With P-delta (in) Radius=170in (in)
1 25.52 10.13 10.06 9.70 10.12 
2 51.04 9.98 10.03 11.05 10.19 
3 76.56 10.11 10.01 9.93 10.29 
4 102.08 9.53 9.54 8.69 9.82 
5 127.6 8.33 8.34 8.01 8.80 
6 153.12 8.00 8.04 8.87 9.20 
7 178.64 8.44 8.50 10.18 10.40 
8 204.16 9.18 9.26 13.41 11.78 
9 229.68 9.97 10.06 14.26 14.92 

10 255.2 11.70 11.82 13.30 16.81 
11 280.72 13.27 13.43 13.86 17.14 
12 306.24 14.10 14.21 14.14 16.63 

 
It is clear that the results in columns 3 and 4 of Table 1 are nearly the same. This is expected as the 
analyses for a large radius will approximate those cases with a path that is flat, thus providing no 
directional effects for the inertial mass. Results for the analyses considering No P-delta effects, 
considering P-delta effects, and for a radius of 170 in. are shown in Figure 7. From this figure it can be 
seen that those results using a radius of 170 in. can replicate reasonably well the results considering 
the P-delta effects within case numbers 3 to 8. On the other hand, there is a significant divergence in 
the results for the remaining of the load cases. This does not necessarily lead to the conclusion that a 
curve radius of 170 in. cannot duplicate the P-delta effects for these cases, but that for these cases the 
mass will need to be adjusted accordingly as to match the desired response. 
 
4.2. Selection of the best fit radius for construction of the arched path 
 
Using the results from all the load cases presented in Table 1 a best fit was used to obtain the single 
radius selection for the construction of the arched path. In this section the spectral displacements 
obtained for those cases not considering P-delta effects are designated as SDo and those cases 
considering P-delta effects are designated as SDp. Based on this definition the standard deviation 
between the spectral displacements SDo and SDp is designated as op and is computed using Eq. (4.1). 
In this equation op is the standard deviation for the difference between SD0i and SDpi. The value of 
this quantity is shown in Figure 8 as a straight line. Those cases solved in terms of Eq. (3.20) and 
considering a radius in the range of 60 to 280 in. in increments of 10 in. are designated as SDR 
Likewise, based on this definition the standard deviation between the spectral displacements SDR and 
SDp is designated as Rp and is computed using Eq. (4.2).  
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In these equations Rp is the standard deviation for the difference between SDRi and SDpi. , and n is the 
number of cases considered in obtaining the radius that best suits all the load conditions considered for 
testing. In order to estimate the optimum value for the radius of the arched path, these standard 
deviations are plotted in Figure 8. Figure 8(a) shows the standard deviation computed using all load 
cases (1 to 12) in which the number of cases n=12. Figure 8(b) shows the standard deviation computed 
using only load cases 6 to 9, in which the number of cases n=4. 
 

 
 a) Considering Load Cases 1 to 12  b) Considering only Load Cases 6 to 9 

 
Figure 8: Comparison of Results of Analyses with Different Radiuses Using Standard Deviation 

 
In Figure 8(a) the standard deviation Rp does not show an optimum value lower than op within the 
range of the radiuses considered. This indicates that the mass rig system cannot simulate the P-delta 
effects for the entire range of load cases (i.e., load cases 1 thru 12). This is clearly observed in Figure 
7, which shows a pronounced difference in load cases 9 to 12 compared to those results obtained for a 
radius of 170 in. and the results considering P-delta effects. Since it is not possible to select a radius 
that fits all load cases it is best to select the radius for those ranges of load cases that are being 
considered for testing. Certainly, the mass rig system can be constructed such that changing the arched 
rails is an easy task. Indeed if one needs to consider a curved path that best fits only load cases 6 to 9, 
the best fit radius for these load cases can be obtained by computing the standard deviation for only 
these cases. Referring to this figure, the best fit radius was obtained for the minimum value of the 
standard deviation Rp, which for this case was 170 inches. 
 
Using the radius of 170 in. and the loading mass of load case 9 the analyses representative of the 
following simulations: (1) considering P-delta, (2) not considering P-delta, and (3) solution of Eq. 
(3.20) using a radius of 170 in. were obtained and results are presented in Figure 9. 
  

 
 

Figure 9: Time-history response for absolute tip column displacement (load case 9) 
 
The natural period of the structure considering P-delta effects was estimated at 1.98 seconds. In this 
figure the maximum displacements obtained using these three solution methods are designated as SDp, 



SDo, and SDR, respectively. It can be seen that SDR (solution for a radius of 170 in.) is within a 
reasonable level of accuracy to SDp (solution considering P-delta effects). It is also worth noting that 
both SDp and SDR occur on the negative side, while SDo (solution not considering P-delta effects) is on 
the positive side of the response. Another salient point is that the solutions considering P-delta effects 
and the close-form solution for R=170 in. diverge after approximately 3 cycles. However, it is 
important to note that the amplitude of vibration after these first three cycles remains nearly the same 
for these two analyses. 
 
5. CONCLUSIONS 
 
This paper discussed the analytical approaches and solutions used in designing a mass rig system that 
can be effectively used in replicating P-delta effects in slender columns. A new mass rig system was 
proposed and analyzed using the Lagrangian equations and state space formulation. This inertial 
loading system may be used in experiments were safety and economic concerns limit the possibility of 
placing the mass on top of the specimen and P-delta effects are expected to be critical. It is shown that 
for certain ranges of load applications, in which P-delta has an increasing effect on the maximum 
displacement of the column, an optimum value for the radius of the arched path can be selected to 
replicate the P-delta effects very close to the expected results when the mass is placed directly on top 
of the column.  
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