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method may not be appropriate for constructing fragility functions using sparse or non-homogeneous 
data. To address this problem, kernel smoothing methods are applied. A kernel is a weighting function 
that is used to estimate a probability distribution function from noisy observations (Want, 1995). In 
other words, we can estimate a function output (e.g., damage state) at a given input value (e.g., 
structural response) as a weighted sum of output observations using kernels. More details are given in 
section 2.3.  
 
The framework presented here consists of first obtaining the structural responses and the resulting 
damage states from an analytical model or an instrumented structure of interest. We then extract a 
DSF from each structural response and apply the kernel smoothing methods to define the probabilistic 
mapping between the DSF and the damage state The kernel method was first introduced in fragility 
analysis by Noh et al. (2011b). In addition to the kernel smoothing method of Noh et al. (2011b), two 
alternative methods for computing the probabilistic mapping that give different levels of information 
are introduced in this paper. For validation, the framework was applied to the simulated data obtained 
from the analytical model of the four-story steel special moment-resisting frame subjected to a set of 
scaled earthquake ground motions (Lignos and Krawinkler, 2009). The results show that the kernel 
smoothing methods can construct smooth and continuous fragility functions, unlike the data binning 
method which results in sparse and discrete functions.  
 
 
2. FRAMEWORK FOR DEVELOPING FRAGILITY FUNCTIONS 
 
A framework for developing fragility functions for structures subjected to earthquake ground motions 
has been developed using a wavelet-based DSF. The DSF is computed from each floor absolute 
acceleration response and is used as a indicator of structural damage. The framework consists of three 
steps: (1) collecting absolute acceleration response data and corresponding damage state from a 
structure subjected to various intensities of seismic loading; (2) extracting DSF values from these data 
using appropriate statistical pattern recognition methods; and (3) constructing fragility functions using 
kernel methods. It is assumed that, as with PBEE, a reliable analytical model of a structure or 
information from an instrumented building, which is sufficient for developing such a model, is 
available. The three steps of the framework are summarized in Figure 2.1, and more details of the 
procedure are described in the following sections. 
 
2.1. Data Collection 
 
In the first step of the framework (Figure 2.1), an analytical model of a structural system is subjected 
to a set of ground motions using incremental dynamic analysis (IDA) (Vamvatsikos and Cornell, 
2002). The IDA involves a set of ground motions, which is scaled to various intensities and applied to 
a structure to evaluate its seismic performance under various intensities of loading. The set of ground 
motions can be selected by numerous methods (Katsanos et al., 2009), and each ground motion is 
scaled by a set of scale factors. Since the statistical techniques are used in the framework as discussed 
in the following sections, we need to have an adequate amount of unbiased structural response data for 
various damage states. Vamvatsikos and Cornell (2002) use 40 records to compute statistics for 
different engineering demand parameters (EDPs) of a structural system. In this paper, the 
wavelet-based DSF, which is introduced in Noh et al. (2011a;b), is used as a measure of seismic 
performance of a structure; thus, the absolute acceleration response of each floor of the structure, from 
which the wavelet-based DSF is extracted (see section 2.2), is collected during each ground motion 
excitation. The corresponding maximum story drift ratio (SDR) for each story is also obtained from 
the same model in order to determine the damage states of the structure (see section 2.3). The SDR at 
each story is computed as the maximum drift difference between two consecutive floors normalized by 
the height of the story.  
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non-stationary signals such as earthquake responses because it represents the signal as a sum of dilated 
and time-shifted wavelets that are localized in time. Nair and Kiremidjian (2007) and Noh et al. 
(2011a) show the relationship between structural parameters and various wavelet-based DSFs 
including the one used in this paper. Before the wavelet transform is applied, each acceleration 
response is standardized by subtracting the mean of the response to offset different initial conditions of 
the measurements. Note that the DSF value varies between 0 (when there is no damage) and 1 (when 
the structure is severely damaged). 
 
2.3. Prediction Model Development Using Kernel Smoothing 
 
The final step of the framework (see Figure 2.1) is to construct fragility functions based on the 
wavelet-based DSF using kernel smoothing methods. A fragility function is defined as the conditional 
probability of being or exceeding a damage state given a DSF value. The fragility functions are 
empirically computed using kernel smoothing methods using SDR and DSF pairs collected and 
computed in the previous steps. A kernel is a symmetric weighting function used for non-parametric 
estimation, and the kernel smoothing methods make non-parametric estimations of functions from 
noisy observation based on their weighted sum. Then, a conventional cumulative distribution function 
(CDF) is fitted to the empirical fragility functions. In addition to the method that uses one-dimensional 
kernel for the DSF values to compute conditional probabilities, which Noh et al. (2011b) introduced, 
two methods are presented in this section to provide different types of information about the 
conditional probability of the SDR given the DSF. First method uses two-dimensional kernel for the 
DSF and SDR to directly estimate each conditional probability. Another one uses one-dimensional 
kernel to estimate the mean and the variance of the conditional density function, and then a probability 
density function (PDF) is fitted to the empirical conditional probability distribution. These three 
methods are summarized in Table 2.1. 
 
Table 2.1. Summary of three methods for probabilistic mapping between the DSF and the SDR 

Methods Outcome Advantages 
One-dimensional Gaussian 

kernel for the DSF and the beta 
CDF fitting (Noh et al., 2011b) 

Fragility function 
(Prob(DS≥DSi|DSF=dsf)) 

Beneficial when the damage 
states are clearly defined in terms 

of the SDR 
Two-dimensional Gaussian 
kernel for the DSF and the 

SDR and the lognormal PDF 
fitting 

Conditional probability of 
the SDR given the DSF 

(Prob(SDR=sdr|DSF=dsf)) Beneficial when the damages 
states are not clearly defined. 

 
The conditional probability can 

be computed for any SDR value. 
One-dimensional Gaussian 
kernel for the DSF and the 

lognormal PDF fitting 

Conditional mean and 
standard deviation 
(μSDR|DSF, σSDR|DSF) 

Conditional probability of 
the SDR given the DSF 

(Prob(SDR=sdr|DSF=dsf)) 
 
The fragility functions can be computed for each story of the structure using the DSF computed from 
individual story responses, or can be computed for the entire structure using the DSF from the roof 
absolute acceleration responses and the maximum SDR among all the stories. The fragility functions 
for each story can be used for more detailed diagnosis of damage at a specific story of a structure. The 
global fragility functions can be used after an earthquake to quickly assess the overall damage of a 
structure. The overall assessment of a structure would be particularly useful when multiple structures 
have to be assessed in a timely manner. In this section, the procedure is described for computing 
fragility functions for each story separately, but similar procedure can be applied to compute the 
fragility functions for the overall damage. 
 
Damage states (DS) are discrete variables most often defined as ‘no damage,’ ‘slight damage,’ 
‘moderate damage,’ and ‘severe damage.’ In this study, each damage state (DSi) covers a range of 
SDR values. Using this definition of damage states, the fragility function can be defined as follows:   
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where Gi(dsf) is the fragility function for being or exceeding damage state i given a DSF value, dsf, 
and SDRis are monotonically increasing threshold values for increasing damage states, DSi s. 
 
Typically an empirical fragility function for each damage state described above is computed using data 
binning. From the numerical simulation and the structural damage diagnosis algorithm, pairs of DSF 
and SDR values, { dsfi, sdri }, are computed for acceleration responses at each floor. Data binning is 
then used to segregate DSF values into each bin and count the number of pairs whose SDR values 
belong to each set of DSi within the bin (Porter et al., 2007). Alternatively, we can apply the kernel 
smoothing method using the following equation: 
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where xis are n realizations of the random variable X, K is a kernel, and h is a smoothing parameter or 
the bandwidth of the kernel K. Substituting the Equation (2.2) into the Equation (2.1), we can estimate 
the conditional probability of the SDR given the DSF using a two-dimensional kernel as follows: 
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where K(x, y) is a two-dimensional kernel centered at (x, y). This equation follows directly from the 
definition of the conditional probability and the kernel density estimation in Equation (2.2). If the 
two-dimensional kernel can be factorized into K(dsf) and K(sdr), then the Equation (2.3) can be 
rewritten as 
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The kernel assigns a different weight for each pair of DSF and SDR values. We use the kernel K(x) 
whose weight is higher for the x values near 0. Using a rectangular kernel with height 1 is equivalent 
to the conventional data binning methods. Equation (2.4) estimates the conditional probability of SDR 
when the value of the DSF is dsf by using all the pairs of DSF and SDR values. Therefore, this method 
is more appropriate than discrete data binning method when the data are sparse or non-homogeneous. 
In addition, the use of all the pairs leads to a continuous and smooth representation of the fragility 
functions when compared with the data binning method.  



 
A conventional CDF is then fitted to the empirically computed fragility functions. The advantages of 
fitting a conventional CDF are as follows: (1) the function is completely described by a few 
parameters; (2) the function is continuous, thus defined for all possible DSF values (no interpolation is 
necessary); and (3) the function increases monotonically. The lognormal CDF is used in conventional 
fragility functions, but other functions, such as the beta CDF and the truncated normal CDF, can also 
be used depending on the data. In general, the CDF that minimizes the fitting error, such as a 
root-mean-square error (RMSE), is selected. Several CDFs of interest are fitted to the data using a 
nonlinear least-square method, and the CDF that has the smallest RMSE is chosen. The lognormal 
distribution is appropriate for this conditional probability because the SDR values are bounded by zero 
on the lower side.  
 
The advantage of this approach to the approach presented in Noh et al. (2011b) is that we do not need 
to discretize the range of the SDR into specific damage states. Instead, we can directly compute the 
conditional probability of the SDR given the DSF without computing the cumulative conditional 
distribution. In addition, this method considers the uncertainty in both the DSF and the SDR 
measurements unlike the previous method that considers the uncertainty of only the DSF by using the 
one-dimensional kernel.   
 
The second method is to estimate the mean and the variance of the SDR given the DSF (μSDR|DSF, and 
σ2

SDR|DSF, respectively) and then fit a PDF. In other words, we can obtain the conditional probability 
distribution of the SDR given the DSF. This method is particularly useful when damage states are not 
clearly defined by the SDR or when the conditional density function of the SDR needs to be 
convolved with other conditional density function for further risk analysis. The estimates of the 

conditional mean, DSFSDR̂ , and the conditional variance, DSFSDR
2̂ , for the DSF value of dsf can be 

computed using a kernel as follows:  
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Once the mean and the variance are computed, the lognormal distribution function is used to fit the 
conditional distribution of the SDR given the DSF by the method of moments. 
 
 
3. APPLICATION TO SIMULATED DATA 
 
The framework for building fragility functions using kernel smoothing methods was validated using a 
set of numerically simulated data from a four-story two-bay steel special moment-resisting frame 
(SMRF). This frame is a perimeter lateral resisting system of an office building designed in Los 
Angeles based on current seismic provisions such as the IBC and the AISC. An analytical model of 
this frame has been developed in DRAIN-2DX analysis program and validated experimentally up 
to collapse (Lignos and Krawinkler, 2009).  
 
The analytical model of the structure was subjected to a set of 40 ground motions scaled to various 
intensities, and absolute acceleration time-histories at each floor were obtained. The unscaled ground 
motions in this set have large magnitude (6.5 < M < 7.0) and distances from the rupture zone of 13 km 



< R < 40 km (Medina and Krawinkler, 2003). The median of the acceleration spectrum of the unscaled 
motions matches the design level acceleration spectrum for the area in which the office building is 
designed. Hence, the ground motion set is a suitable representative one for the location of the 
structure. The response of the SMRF was evaluated up to collapse using IDA, where the spectral 
acceleration at the first mode period (Sa(T1, 2%)) was used as an intensity measure of the ground 
motion. The absolute acceleration responses were collected for each level of intensity, and the 
wavelet-based DSF was extracted. A pair of DSF and SDR, { dsfi, sdri }, was then computed for the 
individual floor absolute acceleration response for each ground motion excitation. Figure 3.1 shows 
the distribution of { dsfi, sdri } pairs from all the ground motion excitations for each story. This figure 
shows that DSF and SDR are well correlated. The correlation coefficients (ρ) of the pairs for stories 1 
to 4 are also shown in the figure. Based on these data, fragility functions are computed for damage 
assessment of the four-story SMRF. 
 

 
 

Figure 3.1. Scatter plot of DSF versus SDR: (a) story 1; (b) story 2; (c) story 3; (d) story 4 
 

For the two-dimensional kernels, the standard Gaussian function is defined as K in Equation (2.3), and 
the smoothing parameter (or bandwidth) of 0.1 for the DSF and 0.0106 for the SDR, which are 
Silverman’s optimum bandwidth (h) for the Gaussian kernel (Silverman, 1986). It is given as 
 
 

5

1

ˆ06.1


 nh  (3.1)
 
where ̂

 
is the sample standard deviation, and n is the number of samples. The Gaussian kernel is a 

powerful kernel widely used in pattern recognition (Evalgelista, 2007). Figure 3.2 shows the scatter 
plot of the DSF from the roof acceleration responses and the maximum SDR among all the stories and 
the conditional density functions fitted to the lognormal PDF for several DSF values. 
 
Alternatively, the conditional mean and the standard deviation of the SDR given the DSF were first 
computed using the Gaussian kernel, and then the lognormal distribution was fitted to the data using 
the method of moments. Figure 3.3 (a) shows the scatter plot of the DSF from the roof acceleration 
responses and the maximum SDR among all the stories and the conditional mean and the standard 
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Figure 3.4. Conditional mean and standard deviation of SDR given DSF for the four-story steel SMRF 
 
 
4. CONCLUSIONS 
 
This paper presents a new framework to compute fragility functions using kernel smoothing methods 
for probabilistic seismic damage diagnosis. In this framework, the fragility function is used to define 
the probabilistic relationship between structural acceleration responses recorded during an earthquake, 
which is summarized using a wavelet-based damage sensitive feature (DSF), and maximum story drift 
ratio (SDR), which is closely correlated with structural damage. The analytical formulations that relate 
the DSF to structural parameters is given in Nair and Kiremidjian (2007) and Noh et al. (2011a), 
which provide the theoretical foundation for using the wavelet-based parameters. The relationship 
between the DSF and SDR is computed using two different kernel smoothing methods that 
non-parametrically estimate the conditional probability of SDR given the DSF value. These 
kernel-based methods provide smooth and continuous representation of fragility functions, unlike the 
data binning method, and are particularly beneficial when the data are sparse and/or non-homogeneous. 
The proposed framework is based on information retrieved from an extensive set of structural 
responses extracted from an analytical model of a structure subjected to a set of ground motions 
utilizing incremental dynamic analysis. The wavelet-based DSF is then computed based on the floor 
absolute acceleration time-histories, and related to SDR that gives DSF an engineering meaning. 
Finally, the conditional probability of SDR given the value of the DSF and their conditional mean and 
standard deviation are computed. These fragility functions can be computed for each story separately 
or for the entire structure to assess the overall damage state. The framework is validated using a set of 
numerically simulated data from a four-story steel special moment-resisting frame subjected to various 
intensities of 40 different ground motions.  
 
The fragility functions are computed using a particular wavelet-based DSF in the study; however, the 
framework can potentially be used with any valid DSF that can reliably estimate the damage state of a 
structure. Further verification and testing of its damage assessment capabilities need to be performed 
as additional data for different types of structures become available, and the general form of the 
fragility functions for a group of similar types of structures can be explored. It is also necessary to 
investigate the feasibility of implementing this damage classification method using the DSF-based 
fragility functions on a wireless structural health monitoring system.  
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