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SUMMARY:

The Specific Barrier Model (SBM) is a particularseaof a composite earthquake source model where the
seismic moment is distributed in a deterministioin&r on a rectangular fault plane on the basisahent and
area constraints. Recently, we have investigatathtiens of the SBM where we (a) allow subevents of
different sizes, and (b) consider different isochmistributions on the earthquake fault. In thisdst we
expound on the combined effects of the above vanaton far-field earthquake source spectra. Wavsho
analytic equations for the high-frequency limit sfurce acceleration spectra and examine the egfettte
variation that can be expected for high-frequermyree spectra levels. We find that the isochrose abntrol

the duration of strong-motion and the envelopeiroétdependence of acceleration levels at a givien $he
results shed light on the sources of variabilitginbng-motion amplitudes observed in earthquaka. da
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1. INTRODUCTION

Earthquake source inversions have become previaléime scientific seismological literature over the
last couple of decades. A common theme in the tesnfl source inversions is the observed
complexity of rupture, both in terms of nonunifotemporal and spatial distribution of slip on the
fault plane for a single event (e.g., Custddio,,L& Archuleta 2005), and in terms of the
intervariability of source processes between eadkes (e.g., Mavroeidis & Papageorgiou 2010), and
the inherent uncertainty of source parameters (Mickdeai 2008; Monelli et al. 2009). It has been
found however that subevent structure of the maeneis generally observed and this subevent
structure is variable between earthquakes (Papgioeo& Aki 1983a; Frankel 1991 p. 199; Aki
1992; Zeng, Anderson, & Yu 1994; Papageorgiou 200j, Spudich, & Boatwright 2005;
Mavroeidis & Papageorgiou 2010). A simple earthguaource model that incorporates basic
complexity is the specific barrier model, introddcand developed by Papageorgiou & Aki (1983a;
b). It can be visualized as shown in Figure 1.1l@ene subevents of equal diametp.( the ‘barrier
interval’) are distributed on a rectangular faularg without overlap. Papageorgiou (2003) has
pointed out that the specific barrier model is asgridealization of the faulting process of an
earthquake. For example, the simplifying requirenaéthe subevents being of the same size may not
hold and a population of different size subeventy e more realistic and result in a more
appropriate description of the radiated seismiacgn&om the composite source, in accordance with
results from source inversions [e.g., Papageor§idki, 1983a; Gusev, 1983, 1989; Joyner & Boore,
1986; Frankel, 1991; Zeng et al. 1994; Tumarkialet1994; Anderson, 1997]. Recently, Halldorsson
& Papageorgiou (2012a; b) have quantified the &ffen the expected far-field acceleration source
spectra of such variations of the SBM. In this gtwe expound on their results by giving analytic
equations for the high-frequency limit of sourceederation spectra of composite earthquake sources
and examine the extent of the variation that caexpected for high-frequency source spectra levels.
We discuss how the isochrons also control the guradf strong-motion and the envelope of time-
dependence of acceleration levels at a givenHite results shed light on the sources of varigtilft
strong-motion amplitudes observed in earthquaka. dat
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Figure 1.1. Examples of the rectangular fault plane of a cositpeearthquake source of magnitudg6.5 for
which the subevent population exhibits increasimgnpglexity, manifested by subevents of increasingly
different sizes. In the examples shown the subsvéailow a (a) Dirac-delta probability density fuion
(PDF) of subevent sizes (i.e., equal size subeyé&ms are arranged on the fault plane without laye(i.e., the
specific barrier model); (b) constant PDF; (c) fehd®DF with dimensiorD = 2; and (d) fractal PDF with
dimensionD = 3. In plots (b) to (d) the subevents are arrangedaomly allowing overlap and their radii are
allowed to vary over the range @f= [0.05R;;0.5R;] where R, is the equivalent radius of the main
earthquake event when modeled as a circular fault.

2. THE SEISMIC SPECTRUM OF A COMPOSITE EARTHQUAKE SOURCE

For completeness we list the basic premise of ppecach of Halldorsson & Papageorgiou (2012a; b)
and by consider the general case of a compositegemke event composed Bfcircular subevents
that vary in size (i.e., variable diameter). Theiua of each subevent can take a random valuesin th
range of[R,; Rp] that relate tar., the radius of the main event modeled as a ciraskck, through
the parameters, anda, (0 < a4, a, < 1) according to

R, = aR¢
R, = &R, = aayR¢ (1)

Subevent radii take values within this range adogrdo a pre-scribed probability distribution. We
apply the natural moment constraint that the cutiudaseismic moment of the subevents equal the
seismic moment of the main event. Seismic energadsated from the subevents as they rupture
statistically independent of one another. The sieigmergy radiated from all subevents that compose
the main event arrives at a site over a time windéwurationT,. Furthermore, the seismic energy
radiated by subevenit(j = 1...N) arrives at the site at random time instgntwhere0 < 7; < Ty

We refer toTj’s as thearrival times'.

On the basis of several simplifying assumptionshefinterdependence of the random variables, we
arrive at the expectation of the squared absolaleevof the Fourier amplitude of the far-field
spectrum of a composite source that consist$ séibevents of random sizRswhereR is a random
variable (Joyner & Boore 1986)

E[IS@)|2] = N-E[Sg(w,R)IZ+ NN —1) - |fr(@)| - (E[ISz @, R[]} 1.2)



where Sz (w, R) is the subevent seismic spectrum (identical forsabevents) anc]ifT(a))|2 is the
squared modulus of thigharacteristic function’of the random variabl&’, which represents the
arrival time (at a station/observation point) of ttadiation emitted by a subevent rupture. Takimgg t

square root of the above equation i|§(w)| = VE[|S(w)|?], we obtain the Fourier amplitude of
the far-field source spectrum of the composite @®see Joyner & Boore 1986, and in particular;
Halldorsson & Papageorgiou 2012a; b).

Both terms on the right hand side of the aggregpeetrum in Equation (1.2) are dependent on the
expected value of the subevent seismic spectruma€Byuming that the kinematics of the subevent
rupture are described by the symmetric circulackcraodel proposed by Sato & Hirasawa (1973),
and as in Papageorgiou (1988) we neglect unimpodetails of the far-field spectrum, the far-field
Swave spectrum of a subevent is given by thestjuaré model

M,
Sp(w,r) = W}fz)z (1.3)

where for a subeverit represented by a circular crack of random radiuen which a local stress
drop,Aqd;, takes place, the seismic moment is given by

16
Mo, = —AoR® (1.4)

andf, is the corner frequency of the subevent, given by

CsB

27R (19)

f =

whereC; is a model dependent and implicit function of thgo v/f [1.72 < C, < 1.85 for 0.7 <
v/B < 0.9] for the symmetric circular crack (Sato & Hirasaw873; Aki & Richards, 1980), with
as the shear wave velocity in the vicinity of terge and> the‘spreading velocityof rupture inside
the circular cracks.

Traditionally seismic spectra in the far-field regihave been interpreted using a circular crackemnod
(e.g., Kanamori & Anderson 1975). From the (lowest)ner frequency (we refer to it &9 of such
spectra one can estimate the dimension of the sprapresented by the radi®s of the crack model.
The latter value, in combination with the seismioment of the evemMg, provides a stress drop
measure, referred to here abobal stress drop’Ac,;. Following this convention, the composite
source is represented by a circular crack of seismiment equal tdf$, given by the expression

16
M§ = —AoGR? (1.6)

The parametef, is the duration of pulse-train (emitted by the estémts as they rupture) that is
received at a station. An estimateTgfmay be obtained by calculating the duration oftfiag of the
composite source, which is inversely proportior@mlthe (first) corner frequency of the source
spectrumT, = C/f,, whereC is a model dependent constant (e.g., Silver 1983).

On the basis of the above formulation the far-fistiirce acceleration spectrum of the SBM (see
Figure 2.1a) was presented by Papageorgiou (198®).expression is derived from Equation (1.2)
and is
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Figure 2.1. (a) Schematic view of the specific barrier modalrse acceleration spectra for two earthquake
magnitudes, and the controlling parameters of fleetsa over the frequency range. (b) Schematic wkthe
partition of the SBM displacement spectrum (blued ithe two terms on the right hand side of Equefin?).
The example shown is for subevents of equal sis&\W) for which a single second corner frequency is
defined.

sin(rtfTy)

2
ntfTy > (2nf)*M.,(f) (1.7)

SM., f,9) =JN€+N(N—C)<

where we usef instead of circular frequency by convention, ahds a high-frequency source
complexity factor introduced by Halldorsson & Papaggiou (2005) (to account for the deviation of
interplate source spectra from self-similar scglingalldorsson & Papageorgiou (2005), in re-
calibrating the SBM, have provided values for thebgl stress dropg; based on the published
literature, and the local stress dibym, for three different tectonic regions on the badigarthquake
data. More recently, Fostat al. (2012) calibrated the SBM to the NGA dataset dkriplate
earthquakes.

We note that an inherent assumption in the abouati& is that over the time windadlly subevent

seismic energy is assumed to arrive uniformly iisted. In other words, the probability density
function (PDF) of energy arrival times at the statis

1
fr@®) = L [0; To] (1.8)

The Fourier transform of(t) is denoted by, (w), and is referred to as the ‘characteristic fumctio
of the R.V.T (Papoulis 1965). The squared amplitude of thisadtaristic function is

- 2 . 2
fr(@)]* = sin? (“02) /(“) (1.9)
wherew = 27rtf is the circular frequency. It is this function tla@pears in Equation (1.2)

We note that the left hand side of Equation (1fears in Equation (1.2), and the right hand side
appears in Equation (1.7). An important charadieri®f Equation (1.9) is that it decays
proportionally tow™2 (Wyss & Brune 1967; Joyner & Boore 1986) andiitsits asf approache$

and o are one and zero, respectively (Papoulis 1965urEi 2.1 shows how the displacement



spectrum expressed by Equation (1.2) is the suromaif two dominant (at different ends of the
spectrum) terms.
3. HIGH-FREQUENCY LIMIT OF THE SOURCE ACCELERATION SPECTRUM

The differences between the source spectra foowsrsubevent size distributions can in part be
guantified by their high-frequency spectral limits.

In the case of the SBM where all subevents arenaaduo be of equal-size Equation (1.2) simplifies
greatly to the form of

ISc()| = JN(1+(N—1)|fT(w)|2)-|5R(w,r0)| (1.10)

wherer, is the subevent radius afid= 1. By convention we prefer the notatipn for the subevent
radius, as the “barrier interval” 8p,. The SBM is a special case of a composite soutverav
subevents of equal sizes are arranged on a re¢aarigult plane without overlapping (Papageorgiou
& Aki 1983a). This requires an additional area ¢aist, which results in the number of subevents of
the SBM being

2

N3 (Aay,
= (=) (=% 1.11
The corresponding barrier interval is
2py = A% ,p (1.12)

We note that in terms of Equation (1.1) then fer 88M

a, = (i) (A&); a, =1 (1.13)

/) \Aoy,

The expressions fa¥ and2p, along with Equations (1.3) to (1.6) and (1.9)yudlefine the seismic
spectrum in Equation (1.7). We can therefore prddeeinvestigate its properties at low and high
frequencies, respectively. The low-frequency liafithis displacement spectrum is

lim |Sc(w)] = lim N+ (N = DIfr(@)]?) - |Sz(w, 1) (1.14)
w— w—
N lim0 |Sg(w,70)| =N - M,, = M,

w—

which is the total seismic moment, as expectedtheaproperties of the characteristic function and
the subevent spectrum. The aggregate accelerg@mtram is then

|A(w)] = ?|Sc(w, 7o) (1.15)

and its high-frequency limit is therefore

lim |A(w) lim N(1+ N = DIfr(@)1) - |A(w, 7)) (1.16)

= VN wiM.,,



wherew, = 2rf, and|A(w, y)| = w?|Sg(w,15)|. The high-frequency limit can be written in varsou
forms by making use of Equations (1.3) to (1.6). Wéée a couple of such result which equivalently
show that

lim |A(@)] ~ A4,
1 (4o, , (T AO‘L) ) (1.17)
Ta 2o, (1M = (4) (AGG (@iM.)

where 4, is the fault area and, = 27nf; is the circular corner frequency of the main evéad
opposed taw, for a single subevent) modeled as a circular crack

In the case of subevent sizes following a uniforstribution betweerk, andR;, the high-frequency
asymptote of the source acceleration spectrum earalculated from Equation (1.2) keeping in mind
the properties of the characteristic function. Témult is

_ ai Aoy ., (1.18)

lim 4@ = [N +a+ D) <E) (w?M.) -
where the number of subevents in this ca$e,is given by Equation (34) in Halldorsson &
Papageorgiou (2012a).

Similarly, the case of a fractal distribution obswent sizes betwedh), andR,, can be derived as

_ 2a2a?Ina,
lim A(@)| = [NELEEEE(

Aay,
AO'G

) W2M,) (1.19)

for fractal dimensiorD = 2, in which case the number of subevents appeanirtge above result is
given by Equation (40) in Halldorsson & Papageandi®012a). Alternatively, for fractal dimension
D = 3, the high-frequency limit of the source accelemaspectrum is

_ 3atas Aoy,
lim [A(@)] = |N=— (
w-0o 2a5 +a, +1

where this time the number of subevents is giverEgyation (41) in Halldorsson & Papageorgiou
(2012a). As can be seen from the Equations (1A 7)1.20) they share a common factoraefM,
which carries the properties of the main eventdradso that the differeriN appearing in Equations
(1.18) to (1.20) depend on stress drop ratios).l&kpressing their relative differences involves
extensive algebra, Halldorsson & Papageorgiou (@plizstead expressed graphically the relative
differences between the above high-frequency spleaticeleration levels for each distribution type,
relative to that of the SBM, for selected valuesptinda,, and stress drop ratios. We note that when
the subevent size range becomes progressivelywararound the barrier interval (i.e., when= 1

and R, = a;R; wherea,; = (4/m)(Ad;/Ac;)) Equations (1.18) to (1.20) all have the same -high
frequency limit, as is expected.

- ) (W2M.) (1.20)
G

4. EFFECTS OF SOURCE-SITE GEOMETRY ON THE FAR-FIELD SPECTRA

Halldorsson & Papageorgiou (2012b) used the SBMhadel earthquake sourcesMf,5.5, 6.5 and
7.5, respectively. They postulated two differeritune types on each source: (a) unilateral, and (b)
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Figure 4.1. The normalized probability density functions oé tenergy arrival times plotted on a map of the
hypothetical sites (triangles) located around tB&MSepresenting #,,6.5 earthquake on a near-vertical fault
on which a bilaterall¢ft), and unilateralr{ght) rupture takes place. The the star denotes tloeefal location
andthe solid lineghe surface projection of the fault

bilateral rupture, respectively. They used différ@spect ratios /W for each near-vertical fault plane
configuration to account for the effects of a liitseismogenic width in shallow crustal interplate
regions. By assuming a circular rupture front sgireg with the speed dd.758 on the fault plane
from the rupture initiation point they synthesizéal, a grid of hypothetical stations surrounding th
earthquake fault, the respective isochrons on &l plane as experienced by an observer at each
stations. An isochron, corresponding to a statisnthe locus of points on the fault plane the
(instantaneous/impulsive) radiations of which redleld station simultaneously. By analyzing the
shape of histograms of energy arrival times at esation they established a PDF of energy arrival
times for each station on the hypothetical gridthis way, they exhibited for the above earthquake
sources and rupture types the physical manifestatidhe probability distribution of energy arrival
times at a station. Moreover, they grouped the glemt and distinct types of PDFs, which
equivalently constitute the shapes of the chamastieefunction that appears in the second termhef t
right hand side of Equation (1.2).

An example of the synthesized PDFs of energy drtivees in thenear-fault region of aM,, 6.5
earthquake on a near-vertical fault and modeletheySBM on which earthquake rupture takes place
in the manner described above is shown in Figufe #he plots shown in Halldorsson &
Papageorgiou (2012b) depict the PDFfagfield stations (except perhaps for g, 7.5 earthquake).
We make the observation that for a given ruptupe tyn the earthquake faults of different sizes the
pattern of PDF shapes at the hypothetical staii®samilar despite differences in earthquake sizes.
The similarities can be described as follows fondateral rupture: The pattern is the same in all four
quadrants that are defined by lines drawn alongesaind strike-normal through the epicenter. At
stations along the strike direction PDF shapesafig 4 are encountered. With increasing azimuthal
angle away from strike the PDF shapes become smoatid approach those of group 2. The same
pattern is observed for all earthquake sizes censt here. However, for kilateral rupture the
pattern is slightly more complicated. In the bacikdvairection of rupture PDFs of group 1 are
observed. PDFs of group 4 are only observed inettieme near-fault region along the fault, and
PDFs of group 3 are observed at stations in thedia direction away from the fault. Finally, in the
fault-normal direction along the fault length at&ins in the far-field region PDF shapes of groiyps

2 are observed. The dissimilarities in PDF shapatdrise are primarily due to the different aspect
ratios of the earthquake faults. This becomes endent for theV,, 7.5 earthquake source.

On the basis of the above observations we cangiredth some degree of certainty what PDFs of
energy arrival times are expected around an eaaleqaource of the type considered in this study,
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Figure 4.2. The combined effects ofariable size subevenistributions andsochrondistributions on the non-
self-similar SBM earthquake source spectra (shouth high-frequency diminution effects, far= 0.06 s)

for two earthquake magnitudes. The SBM source spemte denoted by the blue curves. Subevents are
allowed to vary in sizes between different valugthe lower limit on subevent radi, = a,a,R, and upper
limit of R, = a;R.. The PDF of subevent sizes in this interval atevadd to be of all types considered by
Halldorsson & Papageorgiou (2012a) (i.e., uniforamd fractal for both fractal dimensions 2 and 3.
Additionally, the gray shaded region accounts fariable isochron effects on the source spectrum
(Halldorsson & Papageorgiou, 2012b).

and that of Halldorsson & Papageorgiou (2012b).eBtimating the absolute value of the Fourier
transform of the function that gives rise to theFPghape that is being considered at a station, the
corresponding characteristic function can be evathialn fact, the characteristic functions of the
PDFs of groups 1-4 are provided in the Appendikalidorsson & Papageorgiou (2012b) and are not
repeated here.

The combined effects of variable size subeventidigions and isochron distributions on the non-
self-similar SBM earthquake source spectra are shHowigure 4.2 for two earthquake magnitudes.
While the high-frequency level of the SBM acceliematspectrum is flat, according to Equation (1.7)
we show the spectra (blue curves) with high-fregyefiminution effects, based adw;, = 160 bars
andx = 0.06 s (Fosteet al. 2012). Namely, the gray shaded regions in Figu?eshow the extent of
variation of the source spectral levels of a coritpasarthquake source where subevents are allowed
to vary in sizes between the lower limit on subévwewlii R, = a;a,R, and upper limit ofR, =

a, R whereR. is the equivalent radius of the main earthquakec® modeled as a circular crack.
The PDF of subevent sizes in this interval arevadlib to be of all types considered by Halldorsson &
Papageorgiou (2012a) (i.e., uniform, and fractabigth fractal dimensions 2 and 3. Additionallye th
gray shaded region accounts for variable isocheffects on the source spectrum (Halldorsson &
Papageorgiou 2012b). Plots (a) and (b) in the éghrow the variations when very small subevent
sizes are allowedaf = 0.1) and the maximum size of subevents is definedafor= 0.5 and 0.3,
respectively. We observe from plot (b) that whes shbevents are constrained to be smaller than the
barrier interval much higher spectral amplitudesseen, relative to plot (a). This is a consequeice

a greater number of subevents being required ishséte seismic moment (especially for fractaksiz
distribution). While the spectral variations in &ig 4.2 are seen to affect the frequency range down
to the first corner frequency, the effects are tualifferent reasons at low and high frequencies,
respectively. At intermediate frequencies (betwtdest and second corner frequencies) the observed
spectral variations combine the effects shown gufé 4.1, namely the isochrons effects for stations
surrounding a finite fault. As an example, we showigure 4.3 how the contribution to the spectral
variations depends on the location of station inedab the fault rupture.
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Figure 4.3. Same as in Figure 4.2a except the variation has bplit into the effects for stations experiencing
(a) forward directivity effects and (b) no diredtweffects. The effect is primarily observed ateimediate
frequencies.

5. DISCUSSION AND CONCLUSIONS

The combined effects of source complexity represeibly variable size subevents and the different
isochron distributions that each site experienoas fsimple models of rupture on near vertical fault
as represented by the SBM and its variations mstsiféself in variations of high-frequency source
spectral amplitudes relative to the SBM. The rashiive not taken into account the effects of
shorter/longer strong-motion duration for stationghe forward/backwards direction of rupture. Such
effects would further elevate/lower the high-fregewe levels shown here. The results shed light on
the possible extent of contribution from source plaxity and site-dependent isochron distributions
on observed spectral amplitudes of ground motiattsp. Finally, the synthesized PDFs of arrival
times around a finite source as modeled in thigysttan be used as ‘envelopes’ for shaping time
histories of synthetic strong-motions in the coht#xhe stochastic approach.

ACKNOWLEDGEMENT

This work was supported by Contract Numbers MCEBR002, 01-0102, 02-0102, 03/0.1, and 04-0001 under
the auspices of the Multidisciplinary Center forrtBgquake Engineering Research (MCEER), Buffalo, New
York; the United States National Science Foundatimard Number EEC-9701471; the Icelandic Centre fo
Research (RANNIS) Project Grants No. 60043021, 9004/22/23.

APPENDIX

We note a minor error in the Appendix of Halldorss® Papageorgiou (2012b). The closed form
equation for the characteristic function shown oué&tion (16) in their Appendix is incorrect. The
correct equation is

1
f(t) = —[2a? + 2T abw?

w*
— 2Tya?w sin(Tyw) + 2b?w? + T¢a*w? (1.21)

— 2 cos(Tow)(a? + Toabw? + b?w?) ]
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