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SUMMARY: 
The Specific Barrier Model (SBM) is a particular case of a composite earthquake source model where the 
seismic moment is distributed in a deterministic manner on a rectangular fault plane on the basis of moment and 
area constraints. Recently, we have investigated variations of the SBM where we (a) allow subevents of 
different sizes, and (b) consider different isochron distributions on the earthquake fault. In this study we 
expound on the combined effects of the above variations on far-field earthquake source spectra. We show 
analytic equations for the high-frequency limit of source acceleration spectra and examine the extent of the 
variation that can be expected for high-frequency source spectra levels. We find that the isochrons also control 
the duration of strong-motion and the envelope of time-dependence of acceleration levels at a given site. The 
results shed light on the sources of variability of strong-motion amplitudes observed in earthquake data. 
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1. INTRODUCTION 
 
Earthquake source inversions have become prevalent in the scientific seismological literature over the 
last couple of decades. A common theme in the results of source inversions is the observed 
complexity of rupture, both in terms of nonuniform temporal and spatial distribution of slip on the 
fault plane for a single event (e.g., Custódio, Liu, & Archuleta 2005), and in terms of the 
intervariability of source processes between earthquakes (e.g., Mavroeidis & Papageorgiou 2010), and 
the inherent uncertainty of source parameters (Monelli & Mai 2008; Monelli et al. 2009). It has been 
found however that subevent structure of the main event is generally observed and this subevent 
structure is variable between earthquakes (Papageorgiou & Aki 1983a; Frankel 1991 p. 199; Aki 
1992; Zeng, Anderson, & Yu 1994; Papageorgiou 2003; Mai, Spudich, & Boatwright 2005; 
Mavroeidis & Papageorgiou 2010). A simple earthquake source model that incorporates basic 
complexity is the specific barrier model, introduced and developed by Papageorgiou & Aki (1983a; 
b). It can be visualized as shown in Figure 1.1a, where subevents of equal diameter (2��, the ‘barrier 
interval’) are distributed on a rectangular fault plane without overlap. Papageorgiou (2003) has 
pointed out that the specific barrier model is a gross idealization of the faulting process of an 
earthquake. For example, the simplifying requirement of the subevents being of the same size may not 
hold and a population of different size subevents may be more realistic and result in a more 
appropriate description of the radiated seismic energy from the composite source, in accordance with 
results from source inversions [e.g., Papageorgiou & Aki, 1983a; Gusev, 1983, 1989; Joyner & Boore, 
1986; Frankel, 1991; Zeng et al. 1994; Tumarkin et al., 1994; Anderson, 1997]. Recently, Halldorsson 
& Papageorgiou (2012a; b) have quantified the effects on the expected far-field acceleration source 
spectra of such variations of the SBM. In this study we expound on their results by giving analytic 
equations for the high-frequency limit of source acceleration spectra of composite earthquake sources 
and examine the extent of the variation that can be expected for high-frequency source spectra levels. 
We discuss how the isochrons also control the duration of strong-motion and the envelope of time-
dependence of acceleration levels at a given site. The results shed light on the sources of variability of 
strong-motion amplitudes observed in earthquake data. 



 
 
2. THE SEISMIC SPECTRUM OF A COMPOSITE EARTHQUAKE SOURCE 
 
For completeness we list the basic premise of the approach of Halldorsson & Papageorgiou (2012a; b) 
and by consider the general case of a composite earthquake event composed of � circular subevents 
that vary in size (i.e., variable diameter). The radius of each subevent can take a random value in the 
range of ���; �	
 that relate to ��, the radius of the main event modeled as a circular crack, through 
the parameters �
 and �� (0 � �
, �� � 1) according to 
 �	 � �
���� � ���	 � �
���� (1.1) 

 
Subevent radii take values within this range according to a pre-scribed probability distribution. We 
apply the natural moment constraint that the cumulative seismic moment of the subevents equal the 
seismic moment of the main event. Seismic energy is radiated from the subevents as they rupture 
statistically independent of one another. The seismic energy radiated from all subevents that compose 
the main event arrives at a site over a time window of duration ��. Furthermore, the seismic energy 
radiated by subevent � (� � 1 … �) arrives at the site at random time instant ��, where 0 � �� � ��. 
We refer to ��’s as the ‘arrival times’.  
 
On the basis of several simplifying assumptions of the interdependence of the random variables, we 
arrive at the expectation of the squared absolute value of the Fourier amplitude of the far-field 
spectrum of a composite source that consists of � subevents of random sizes �, where � is a random 
variable (Joyner & Boore 1986) 
 ��|����|�
 � � · ��|�!��, ��|�
 " ��� # 1� · $%&'���$� · (��|�!��, ��|
)� (1.2) 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 1.1. Examples of the rectangular fault plane of a composite earthquake source of magnitude *+6.5 for 
which the subevent population exhibits increasing complexity, manifested by subevents of increasingly 
different sizes. In the examples shown the subevents follow a (a) Dirac-delta probability density function 
(PDF) of subevent sizes (i.e., equal size subevents) that are arranged on the fault plane without overlap (i.e., the 
specific barrier model); (b) constant PDF; (c) fractal PDF with dimension / � 2; and (d) fractal PDF with 
dimension / � 3. In plots (b) to (d) the subevents are arranged randomly allowing overlap and their radii are 
allowed to vary over the range of 1 � �0.05��; 0.5��
 where �� is the equivalent radius of the main 
earthquake event when modeled as a circular fault. 
 



 

where �!��, �� is the subevent seismic spectrum (identical for all subevents) and $%&'���$�
 is the 

squared modulus of the ‘characteristic function’ of the random variable �, which represents the 
arrival time (at a station/observation point) of the radiation emitted by a subevent rupture. Taking the 

square root of the above equation i.e., |�����| � 2��|����|�
, we obtain the Fourier amplitude of 
the far-field source spectrum of the composite source (see Joyner & Boore 1986, and in particular; 
Halldorsson & Papageorgiou 2012a; b).    
 
Both terms on the right hand side of the aggregate spectrum in Equation (1.2) are dependent on the 
expected value of the subevent seismic spectrum. By assuming that the kinematics of the subevent 
rupture are described by the symmetric circular crack model proposed by Sato & Hirasawa (1973), 
and as in Papageorgiou (1988) we neglect unimportant details of the far-field spectrum, the far-field 
S-wave spectrum of a subevent is given by the “�-square” model 
 

�!��, 1� � *34 1 " �%/%��� (1.3) 

 
where for a subevent 7, represented by a circular crack of random radius � on which a local stress 
drop, ∆9:, takes place, the seismic moment is given by 
 

*34 � 167 ∆9:�< (1.4) 

 
and %� is the corner frequency of the subevent, given by 
 

%� � =>?2@� (1.5) 

 
where => is a model dependent and implicit function of the ratio A/? [1.72 � => � 1.85 for 0.7 �A/? � 0.9] for the symmetric circular crack (Sato & Hirasawa, 1973; Aki & Richards, 1980), with ? 
as the shear wave velocity in the vicinity of the source and A the ‘spreading velocity’ of rupture inside 
the circular cracks. 
 
Traditionally seismic spectra in the far-field region have been interpreted using a circular crack model 
(e.g., Kanamori & Anderson 1975). From the (lowest) corner frequency (we refer to it as %
) of such 
spectra one can estimate the dimension of the source, represented by the radius �� of the crack model. 
The latter value, in combination with the seismic moment of the event, *3�, provides a stress drop 
measure, referred to here as ‘global stress drop’ ∆9D. Following this convention, the composite 
source is represented by a circular crack of seismic moment equal to *3�, given by the expression 
 

*3� � 167 ∆9D��< (1.6) 

 
The parameter �� is the duration of pulse-train (emitted by the subevents as they rupture) that is 
received at a station. An estimate of �� may be obtained by calculating the duration of faulting of the 
composite source, which is inversely proportional to the (first) corner frequency of the source 
spectrum, �� � =&/%
, where =& is a model dependent constant (e.g., Silver 1983).  
 
On the basis of the above formulation the far-field source acceleration spectrum of the SBM (see 
Figure 2.1a) was presented by Papageorgiou (1988). The expression is derived from Equation (1.2) 
and is 
 



��*� , %, E� � F�E " ��� # E� Gsin�@%���@%�� K� �2@%�²*MN�4�%� (1.7) 

 
where we use % instead of circular frequency by convention, and E is a high-frequency source 
complexity factor introduced by Halldorsson & Papageorgiou (2005) (to account for the deviation of 
interplate source spectra from self-similar scaling). Halldorsson & Papageorgiou (2005), in re-
calibrating the SBM, have provided values for the global stress drop ∆9D based on the published 
literature, and the local stress drop ∆9: for three different tectonic regions on the basis of earthquake 
data. More recently, Foster et al. (2012) calibrated the SBM to the NGA dataset of interplate 
earthquakes. 
 
We note that an inherent assumption in the above equation is that over the time window �� subevent 
seismic energy is assumed to arrive uniformly distributed. In other words, the probability density 
function (PDF) of energy arrival times at the station is 
 

%'�O� � 1��        ,      O P �0; ��
 (1.8) 

 
The Fourier transform of %'�O� is denoted by %&'���, and is referred to as the ‘characteristic function’ 
of the R.V. � (Papoulis 1965). The squared amplitude of this characteristic function is  
 

$%&'���$� � sin� QR'S� T QR'S� T�U  (1.9) 

 
where � � 2@% is the circular frequency. It is this function that appears in Equation (1.2) 
 
We note that the left hand side of Equation (1.9) appears in Equation (1.2), and the right hand side 
appears in Equation (1.7). An important characteristic of Equation (1.9) is that it decays 
proportionally to �V� (Wyss & Brune 1967; Joyner & Boore 1986) and its limits as % approaches 0 
and ∞ are one and zero, respectively (Papoulis 1965). Figure 2.1 shows how the displacement 

(a)  (b) 
 
Figure 2.1. (a) Schematic view of the specific barrier model source acceleration spectra for two earthquake 
magnitudes, and the controlling parameters of the spectra over the frequency range. (b) Schematic view of the 
partition of the SBM displacement spectrum (blue) into the two terms on the right hand side of Equation (1.2). 
The example shown is for subevents of equal sizes (SBM) for which a single second corner frequency is 
defined. 



spectrum expressed by Equation (1.2) is the summation of two dominant (at different ends of the 
spectrum) terms. 
 
 
3. HIGH-FREQUENCY LIMIT OF THE SOURCE ACCELERATION SPECTRUM 
 
The differences between the source spectra for various subevent size distributions can in part be 
quantified by their high-frequency spectral limits.  
 
In the case of the SBM where all subevents are assumed to be of equal-size Equation (1.2) simplifies 
greatly to the form of  
 

|�����| � X� Q1 " �� # 1�$%&'���$�T · |�!��, 1��| (1.10) 

 
where 1� is the subevent radius and E � 1. By convention we prefer the notation �� for the subevent 
radius, as the “barrier interval” is 2��. The SBM is a special case of a composite source where 
subevents of equal sizes are arranged on a rectangular fault plane without overlapping (Papageorgiou 
& Aki 1983a). This requires an additional area constraint, which results in the number of subevents of 
the SBM being 
 

� � Q@4T< Z∆9:∆9D[�
 (1.11) 

 
The corresponding barrier interval is 
 

2�� � 4@ ∆9D∆9: 2�� (1.12) 

 
We note that in terms of Equation (1.1) then for the SBM  
 

�
 � Z4@[ ZΔ9DΔ9: [ ; �� � 1 (1.13) 

 
The expressions for � and 2�� along with Equations (1.3) to (1.6) and (1.9) fully define the seismic 
spectrum in Equation (1.7). We can therefore proceed to investigate its properties at low and high 
frequencies, respectively. The low-frequency limit of this displacement spectrum is  
 lim R_�|�����| � lim R_� 2��1 " �� # 1�|%'���|�� ` |�!��, 1��|

� � lim R_� |�!��, 1��| � � ` *�4 � *�  

(1.14) 

 
which is the total seismic moment, as expected, via the properties of the characteristic function and 
the subevent spectrum. The aggregate acceleration spectrum is then 
 |a���| � ��|����, 1��| (1.15) 
 
and its high-frequency limit is therefore  
 lim R_b|a���| � lim R_b 2��1 " �� # 1�|%'���|�� ` |a��, 1��|

� √� ���*�4
 

(1.16) 

 



where �� � 2@%� and |a��, 1��| � ��|�!��, 1��|. The high-frequency limit can be written in various 
forms by making use of Equations (1.3) to (1.6). We note a couple of such result which equivalently 
show that  
 lim R_b|a���| d Δ9:2a�

~ 1√�
 Ff9:f9D ��
�*�� � Q@4T ZΔ9:Δ9D[ ��
�*�� (1.17) 

 
where a� is the fault area and �
 � 2@%
 is the circular corner frequency of the main event (as 
opposed to �� for a single subevent) modeled as a circular crack. 
 
In the case of subevent sizes following a uniform distribution between �� and �	, the high-frequency 
asymptote of the source acceleration spectrum can be calculated from Equation (1.2) keeping in mind 
the properties of the characteristic function. The result is 
 

lim R_b|a���| � F� �
�3 ���� " �� " 1� Zf9:f9D[ ��
�*�� (1.18) 

 
where the number of subevents in this case, �, is given by Equation (34) in Halldorsson & 
Papageorgiou (2012a).  
 
Similarly, the case of a fractal distribution of subevent sizes between �� and �	, can be derived as 
 

lim R_b|a���| � F� 2�
���� ln ����� # 1 Zf9:f9D[ ��
�*�� (1.19) 

 
for fractal dimension / � 2, in which case the number of subevents appearing in the above result is 
given by Equation (40) in Halldorsson & Papageorgiou (2012a).  Alternatively, for fractal dimension / � 3, the high-frequency limit of the source acceleration spectrum is 
 

lim R_b|a���| � F� 3�
����2��� " �� " 1 Zf9:f9D[ ��
�*�� (1.20) 

 
where this time the number of subevents is given by Equation (41) in Halldorsson & Papageorgiou 
(2012a). As can be seen from the Equations (1.17) to (1.20) they share a common factor of �
�*� 
which carries the properties of the main event (note also that the different � appearing in Equations 
(1.18) to (1.20) depend on stress drop ratios). While expressing their relative differences involves 
extensive algebra, Halldorsson & Papageorgiou (2012a) instead expressed graphically the relative 
differences between the above high-frequency spectral acceleration levels for each distribution type, 
relative to that of the SBM, for selected values of �
 and ��, and stress drop ratios. We note that when 
the subevent size range becomes progressively narrower around the barrier interval (i.e., when �� � 1 
and �	 � �
�� where �
 � �4/@��Δ9D/Δ9:�) Equations (1.18) to (1.20) all have the same high-
frequency limit, as is expected. 
 
 
4. EFFECTS OF SOURCE-SITE GEOMETRY ON THE FAR-FIELD SPECTRA 
 
Halldorsson & Papageorgiou (2012b) used the SBM to model earthquake sources of *+5.5, 6.5 and 
7.5, respectively. They postulated two different rupture types on each source: (a) unilateral, and (b) 



bilateral rupture, respectively. They used different aspect ratios g/h for each near-vertical fault plane 
configuration to account for the effects of a limited seismogenic width in shallow crustal interplate 
regions. By assuming a circular rupture front spreading with the speed of 0.75? on the fault plane 
from the rupture initiation point they synthesized, for a grid of hypothetical stations surrounding the 
earthquake fault, the respective isochrons on the fault plane as experienced by an observer at each 
stations. An isochron, corresponding to a station, is the locus of points on the fault plane the 
(instantaneous/impulsive) radiations of which reach the station simultaneously. By analyzing the 
shape of histograms of energy arrival times at each station they established a PDF of energy arrival 
times for each station on the hypothetical grid. In this way, they exhibited for the above earthquake 
sources and rupture types the physical manifestation of the probability distribution of energy arrival 
times at a station. Moreover, they grouped the prevalent and distinct types of PDFs, which 
equivalently constitute the shapes of the characteristic function that appears in the second term of the 
right hand side of Equation (1.2).  
 
An example of the synthesized PDFs of energy arrival times in the near-fault region of a *+6.5 
earthquake on a near-vertical fault and modeled by the SBM on which earthquake rupture takes place 
in the manner described above is shown in Figure 4.1. The plots shown in Halldorsson & 
Papageorgiou (2012b) depict the PDFs at far-field stations (except perhaps for the *+7.5 earthquake). 
We make the observation that for a given rupture type on the earthquake faults of different sizes the 
pattern of PDF shapes at the hypothetical stations is similar despite differences in earthquake sizes. 
The similarities can be described as follows for a unilateral rupture: The pattern is the same in all four 
quadrants that are defined by lines drawn along strike and strike-normal through the epicenter. At 
stations along the strike direction PDF shapes of group 4 are encountered. With increasing azimuthal 
angle away from strike the PDF shapes become smoother and approach those of group 2. The same 
pattern is observed for all earthquake sizes considered here. However, for a bilateral rupture the 
pattern is slightly more complicated. In the backward direction of rupture PDFs of group 1 are 
observed. PDFs of group 4 are only observed in the extreme near-fault region along the fault, and 
PDFs of group 3 are observed at stations in the forward direction away from the fault. Finally, in the 
fault-normal direction along the fault length at stations in the far-field region PDF shapes of groups 1-
2 are observed. The dissimilarities in PDF shapes that arise are primarily due to the different aspect 
ratios of the earthquake faults. This becomes most evident for the *+7.5 earthquake source.   
 
On the basis of the above observations we can predict with some degree of certainty what PDFs of 
energy arrival times are expected around an earthquake source of the type considered in this study, 

 
 
Figure 4.1. The normalized probability density functions of the energy arrival times plotted on a map of the 
hypothetical sites (triangles) located around the SBM representing a *+6.5 earthquake on a near-vertical fault 
on which a bilateral (left), and unilateral (right) rupture takes place. The the star denotes the epicentral location 
and the solid lines the surface projection of the fault 



and that of Halldorsson & Papageorgiou (2012b). By estimating the absolute value of the Fourier 
transform of the function that gives rise to the PDF shape that is being considered at a station, the 
corresponding characteristic function can be evaluated. In fact, the characteristic functions of the 
PDFs of groups 1-4 are provided in the Appendix of Halldorsson & Papageorgiou (2012b) and are not 
repeated here.  
 
The combined effects of variable size subevent distributions and isochron distributions on the non-
self-similar SBM earthquake source spectra are shown in Figure 4.2 for two earthquake magnitudes. 
While the high-frequency level of the SBM acceleration spectrum is flat, according to Equation (1.7) 
we show the spectra (blue curves) with high-frequency diminution effects, based on Δ9: � 160 bars 
and i � 0.06 s (Foster et al. 2012). Namely, the gray shaded regions in Figure 4.2 show the extent of 
variation of the source spectral levels of a composite earthquake source where subevents are allowed 
to vary in sizes between the lower limit on subevent radii �� � �
���� and upper limit of �	 ��
�� where �� is the equivalent radius of the main earthquake source, modeled as a circular crack. 
The PDF of subevent sizes in this interval are allowed to be of all types considered by Halldorsson & 
Papageorgiou (2012a) (i.e., uniform, and fractal for both fractal dimensions 2 and 3. Additionally, the 
gray shaded region accounts for variable isochrons effects on the source spectrum (Halldorsson & 
Papageorgiou 2012b). Plots (a) and (b) in the figure show the variations when very small subevent 
sizes are allowed (�� � 0.1) and the maximum size of subevents is defined for �
 � 0.5 and 0.3, 
respectively. We observe from plot (b) that when the subevents are constrained to be smaller than the 
barrier interval much higher spectral amplitudes are seen, relative to plot (a). This is a consequence of 
a greater number of subevents being required to satisfy the seismic moment (especially for fractal size 
distribution). While the spectral variations in Figure 4.2 are seen to affect the frequency range down 
to the first corner frequency, the effects are due to different reasons at low and high frequencies, 
respectively. At intermediate frequencies (between first and second corner frequencies) the observed 
spectral variations combine the effects shown in Figure 4.1, namely the isochrons effects for stations 
surrounding a finite fault. As an example, we show in Figure 4.3 how the contribution to the spectral 
variations depends on the location of station relative to the fault rupture.  

(a)

 

(b) 

  

 
Figure 4.2. The combined effects of variable size subevent distributions and isochron distributions on the non-
self-similar SBM earthquake source spectra (shown with high-frequency diminution effects, for i � 0.06 s) 
for two earthquake magnitudes. The SBM source spectra are denoted by the blue curves. Subevents are 
allowed to vary in sizes between different values of the lower limit on subevent radii �� � �
���� and upper 
limit of �	 � �
��. The PDF of subevent sizes in this interval are allowed to be of all types considered by 
Halldorsson & Papageorgiou (2012a) (i.e., uniform, and fractal for both fractal dimensions 2 and 3. 
Additionally, the gray shaded region accounts for variable isochron effects on the source spectrum 
(Halldorsson & Papageorgiou, 2012b).  



 
5. DISCUSSION AND CONCLUSIONS 
 
The combined effects of source complexity represented by variable size subevents and the different 
isochron distributions that each site experiences from simple models of rupture on near vertical faults 
as represented by the SBM and its variations manifests itself in variations of high-frequency source 
spectral amplitudes relative to the SBM. The results have not taken into account the effects of 
shorter/longer strong-motion duration for stations in the forward/backwards direction of rupture. Such 
effects would further elevate/lower the high-frequency levels shown here. The results shed light on 
the possible extent of contribution from source complexity and site-dependent isochron distributions 
on observed spectral amplitudes of ground motion spectra. Finally, the synthesized PDFs of arrival 
times around a finite source as modeled in this study can be used as ‘envelopes’ for shaping time 
histories of synthetic strong-motions in the context of the stochastic approach. 
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APPENDIX 
 
We note a minor error in the Appendix of Halldorsson & Papageorgiou (2012b). The closed form 
equation for the characteristic function shown in Equation (16) in their Appendix is incorrect. The 
correct equation is  

%�O� � 1�j �2k� " 2��kl��
# 2��k�� sin����� " 2l��� " ���k���# 2 cos������k� " ��kl�� " l���� 
 

(1.21) 

 
 
  

(a) 

 

(b) 

  

 
Figure 4.3. Same as in Figure 4.2a except the variation has been split into the effects for stations experiencing 
(a) forward directivity effects and (b) no directivity effects. The effect is primarily observed at intermediate 
frequencies. 
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