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SUMMARY:
The risk of pounding against the surrounding structures, usually against the retaining walls, has become a major
concern about the seismic performance of base-isolated buildings subjected to unexpectedly large earthquakes.
The required isolation gap to ensure the superstructure of a base-isolated building not to collapse is evaluated
through incremental dynamic analysis and the required gap size-to-seismic intensity relationship is established.
From this relationship, two characteristic gap sizes, namely the minimum required gap size, δ1, and the maximum
gap size, δ2, may be identified. Given a base-isolated building and a seismic intensity, e.g., the energy-equivalent
velocity in this paper, an isolation gap wider than δ1 would ensure a 50% possibility that the superstructure
would not collapse. On the other hand, the isolation gap would impose no influence on the performance of the
isolated building if it is wider than δ2. Especially, the minimum required gap size, δ1, is of essential importance for
the performance design of base-isolated buildings. A simple equation of estimating δ1 and δ2 for buildings with
various parameters is proposed through data regression. In addition, a procedure of determining the required
strength for the superstructure, given a seismic intensity, is also proposed.
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1. INTRODUCTION

Compared with that of conventional seismic resistant building structures, the performance of a seismically
isolated structure is relatively easier to estimate because of the well-controlled deformation pattern of
the structure. However, it was pointed out that the performance of base-isolated structures might
become suspicious and even unreliable under unexpectedly large earthquake (Kikuchi et al, 1995). In
particular, possible poundings of the base of the superstructure against the retaining walls may subject
the superstructure to unexpected damage. Recently, many efforts have been devoted in Japan to
verifying the safety of base-isolated buildings under such extreme circumstances (for example, Sato
et al, 2011; Ogura et al, 2011; Sano et al, 2010).

It has been widely accepted by structural engineers that the proportion of the isolation gap is of
significant importance for ensuring the safety margin of a base-isolated building. However, the current
common practice in Japan is to set the size of the isolation gap greater than the maximum displacement
response of the isolation layer, obtained from dynamic analysis, to design-level earthquake ground
motions. The uncertainty and variability of earthquake ground motions frequently urge the engineers
to prefer isolation gap much wider than, sometimes even twice or thrice, the calculated maximum
displacement to introduce some safety margin. Even though, the degree of safety margin is unclear.
Furthermore, the construction site is usually limited and does not allow for too wide an isolation gap.

In this paper, the methodology of evaluating the seismic performance of building structures in FEMA
P695 (2009) is adopted for base-isolated structures. Incremental dynamic analysis (IDA) is performed
with a set of many ground motion records scaled incrementally until predefined ultimate limit state of
the base-isolated building (Vamvatsikos and Cornell, 2002). The isolation gap size is thus related to a
probabilistic limit state capacity of the building.

 



Figure 2.1. Analysis model

2. ANALYSIS MODEL

A two degree of freedom system as shown in Fig. 2.1 is adopted for the analysis. The superstructure
is represented by a single degree of freedom with a nonlinear spring which exhibits a trilinear skeleton
response and degraded reloading and unloading stiffness following the rules proposed by Takeda et al
(1970) (Fig. 2.2(a)). As a standard case, the initial stiffness is assumed 6709x103 kN/m and the yield
strength Qy = 45000 kN. The total weight of the superstructure is assumed to be 150000 kN, resulting
in 0.3 s fixed base period and a shear coefficient C0 = 0.3. Furthermore, the cracking strength is
assumed to be 0.3Qy, that is 13500 kN, in the standard case. The secant stiffness at the yield point is
assumed to be 0.3 times the initial stiffness and the unloading stiffness parameter, β, defined by Takeda
et al (1970) is taken as 0.4. 2% transient stiffness-proportional damping is assigned to the superstructure
corresponding to its fixed-base period.

The weight of the isolation layer is assumed to be 40000 kN. The layer is modelled by three nonlinear
springs in parallel, that is, a spring for dampers, a spring for isolators (rubber bearings) and a spring to
simulate the pounding against the retaining walls. Bilinear elastic-plastic model is assumed for the
damper spring (Fig. 2.2(b)). The yield strength of the dampers, Qdy, is evaluated through the ratio of
the yield strength of the dampers to the total weight of the whole building, denoted as αs. It varies from
0.02 to 0.06 in the following analysis. The initial stiffness of the dampers is taken as 240x103 kN/m and
the post-yield stiffness 4x103 kN/m.

It is assumed that natural rubber bearings are used as the isolators. Trilinear elastic hysteresis is
adopted for the isolators (Fig. 2.2(c)). According to the test data in the literature, it is assumed that the
isolator begins to exhibit strain-hardening at 250% shear strain and the tangent stiffness becomes 2
times the initial stiffness and then it further increases to 7 times the initial stiffness beyond 350% shear
strain (Nakazawa et al, 2011). The bearing fractures at 450% shear strain. Two parameters of the
isolator are investigated, namely the total rubber thickness, h, and the initial stiffness, ki. Because the
strain hardening and fracture of the isolator is defined by shear strain, the total rubber thickness has
thus an influence on the deformation at which the isolator begins to harden and at which it fractures.
On the other hand, the initial stiffness of the isolator, ki, is generally used to calculate the so-called
isolation period, Tf, which equals 2π√(m/ki) and is an important characteristic vibration period for
base-isolated buildings, where m is the total mass of the building, including the superstructure and the
isolation layer. Although the total rubber thickness h has an influence on the stiffness of a single rubber
bearing, it is a common practice in the design practice to use both sliding bearings and rubber bearings
in a base-isolated building. As a result, the stiffness of the isolation layer can be adjusted by changing
the proportion between the sliding and the rubber bearings without changing the rubber thickness of

Figure 2.2. Hysteretic behavior: (a) superstructure;
(b) damper; (c) isolation and (d) retaining wall
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the rubber bearings. Hence, the two parameters, h and ki, are able to be considered independent of
each other.

The post-fracture behavior of the bearing is not modelled. Instead, a very large stiffness is assigned to
the bearing when it exceeds the fracture strain. In real cases, the superstructure may fall down on the
lower footings and the friction on the contact interface, whose friction coefficient is believed greater
than 0.4, is large enough to prevent any further displacement of the isolation layer before the
superstructure collapses.

Pounding is modelled by a linear spring with initial gaps on both sides of the origin (Fig. 2.2(d)). The
stiffness of the retaining wall is set to be 575x103 kN/m as a standard. This value is derived by
assuming a 50 m long cantilever retaining wall, whose unit meter stiffness is based on the stiffness of
a 7 m high reinforced concrete cantilever wall with soil backfill suggested by Kashiwa et al (2005).
Influenced by the properties of the backfill soil and the thickness of concrete wall, the stiffness of the
retaining wall is subject to great uncertainty. To address this uncertainty, the retaining wall stiffness is
taken as 1/100, 1/50, 1/10, 1/5, 1.0 and 2.0 times the standard stiffness, that is, 575x103kN/m, in the
following analysis to see its effect. These ratios are denoted as βk hereafter.

3. INPUT GROUND MOTIONS

The Far-Field set in FEMA P695 (2009) is used as the input ground motions in the following analysis.
Among the 44 earthquake ground motion components in the Far-Field set, however, there are 8
components, belonging to 6 different records, whose maximum usable period are less than 6 s. Because
the isolation period of 6 s will be investigated, these components are considered inappropriate. So the
6 records containing these unqualified components are excluded in the analysis and the remaining 32
components of 16 records are used. The two components in a record are used independently in the
analysis. In addition, they are also normalized independently by their respective peak ground velocity
(PGV) to the median PGV of the 32 components.

After being normalized, the ground motion set is ready for the use in the incremental dynamic analysis
(IDA), in which the ground motions are scaled selectively to produce different earthquake intensities.
In FEMA P695 (2009), the spectral acceleration corresponding to the fundamental period of vibration,
Sa(T1), is used as the intensity measure. For base-isolated structures, some equivalent period is usually
a better indicator for the dynamic response of the building than the fundamental period. In practical
design, such equivalent period is generally related to the secant stiffness of the isolation layer at its
maximum deformation response. In IDA, however, the maximum deformation of the isolation layer
changes constantly with the change in earthquake intensity. It is not easy to define a uniform equivalent
stiffness for a single isolated building subjected to ground motions of various intensities. As a result,
the above mentioned isolation period Tf, which is independent of the structural response, is considered
a better quantity to represent the dynamic characteristic property of the building.

On the other hand, it has become a common practice to use the energy-equivalent spectral velocity,
VE, as intensity measure for flexible structural system (in Japan) (Akiyama, 1980). VE is the velocity
which makes the kinematic energy of the total mass of a system equals its input energy of the system
under the ground motion. As a result, the energy-equivalent spectral velocity corresponding to the
isolation period, VE(Tf), is used as the intensity measure in this study. Fig. 3.1 gives an example when
the 32 ground motions, after being normalized by their PGVs, are selectively scaled to a median VE(Tf)
= 150 cm/s at Tf = 4 s.



Figure 3.1. Scaling of ground motions

4. EVALUATION OF ISOLATION GAP SIZE

4.1. Evaluation method

The IDA curves of an isolated building with C0 = 0.25, Tf = 4 s, h = 200mm, αs = 0.04, βk = 1 and gap
size = 50 cm are illustrated in the left graph in Fig. 4.1(a). The bold line indicates the median of the
individual curves. It is seen that almost all the IDA curves tend to enter a flat branch before the
superstructure yields (i.e., its ductility factor, μ, which is the ratio of the maximum to the yield
displacement, exceeds 1.0). This indicates the great effect of pounding. This is otherwise for an
isolated building with gap size = 70 cm and all other parameters the same, as can be seen in Fig. 4.1(b).

In common practice, the superstructure of an isolated building is not subject to strict requirement for
ductile behavior. Therefore, it seems realistic to define the collapse of the superstructure when its
ductility μ exceeds 1.0. The intensity measure, VE, corresponding to μ = 1.0 for every ground motion
can be collected and a collapse fragility curve can thus be produced, as demonstrated in the right
graphs in Fig. 4.1(a) and (b), which relates the intensity measure, VE, with the probability of collapse.
The VE corresponding to 50% probability of collapse is then determined by fitting the data to a lognormal
distribution function. The thus-obtained VE is defined herein as the collapse capacity, denoted as VEC
hereafter.

4.2. Characteristic gap sizes

A change of any of the structural parameters described above will have more or less an influence on
VEC of a base-isolated building. Particularly, the influence of the gap size is of great interest of the

Figure 4.1. Evaluation of collapse capacity: (a) gap size = 50 cm and (b) gap size = 70 cm
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Figure 4.2. Definition of characteristic gap sizes δ1 and δ2: (a) C0 = 0.25 and (b) C0 = 0.15 ~ 0.40
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present paper. Fig. 4.2 shows the relationship of VEC and gap size for isolated building with Tf = 4 s., h
= 200mm, αs = 0.04, βk = 1. For all the value of C0, essentially bilinear relationship can be observed It
can also be observed that larger C0 increases the gap size at which the curve enters a flat branch.

Given a design requirement of collapse capacity, for example, VEC = 150 cm/s as shown in Fig. 4.2, a
corresponding gap size can be found from the VEC-gap size curve. This gap size is the minimum size
necessary to ensure the required collapse capacity, and is denoted as δ1 hereafter. On the other hand,
the gap size would have nothing to do with the collapse capacity when it exceeds a certain value, that
is, the VEC-gap size curve becomes flat. This certain value, as marked in Fig. 4.2 as hollow circles, is
denoted as δ2. It indicates a maximum gap size until which the gap size has an effect on the performance
of the building. It is highly dependent on the strength of the superstructure, C0.

In addition, there are cases that the building cannot meet the collapse capacity requirement even if the
gap size is infinite or the pounding is not taken into account. For example, it is so when C0 = 0.15 as
shown in Fig. 4.2(b). In this case, the design of the base-isolated building itself, rather than the selection
of an appropriate gap size, should be revised.

4.3. Influence of structural properties

Other structural properties may have influence on the relationship of collapse capacity versus gap
size. In Fig. 4.3(a), the relationships for building of isolation period Tf = 3 s and Tf = 6 s are compared.
Longer isolation periods indicate softer isolators used in the isolation layer. This generally leads to two
major consequences, that is, on one hand, less strength demand for the superstructure; and on the
other hand, greater displacement response of the isolation layer, given input energy the same. As a
result, as can be seen in Fig. 4.3(a), provided the gap is infinite, the collapse capacities of Tf = 6 s
buildings are greater than those of Tf = 3 s ones, given the strength of the superstructure the same. On
the other hand, however, the required minimum gap sizes, δ1, for Tf = 6 s buildings are much larger than
those for buildings of Tf = 3 s, given the demand for collapse capacity the same.

Another structural property having major influence on δ1 is the amount of dampers in the isolation
layer, which is represented by the ratio αs. It seems that the increase of the amount of dampers can
help reducing δ1 given the demand for collapse capacity the same. This is demonstrated in Fig. 4.3(b)
by comparing the results for buildings of αs = 0.02 and for those of αs = 0.06. However, it is worth
noting that the increase in the amount of dampers also increase the strength demand for the
superstructure.

The total height of the rubber, h, also has an effect on the VEC-gap size curves, but this effect seems to
confine to only δ2, the maximum effectual gap size(Fig. 4.3(c)). Smaller rubber height means that the
isolator would exhibit strain hardening and thus subject the superstructure to large shear force at
smaller deformation. This is another effective restrain for an isolated building to develop greater collapse
capacity, other than the restrain from the isolation gap size.



Finally, the stiffness of the retaining wall has some effect on the performance of the isolated building.
However, this is true only if the retaining wall stiffness is comparable or even smaller than the stiffness
of the isolator. To give an example, the VEC-gap size curves for buildings with very soft retaining walls
(βk = 1/100) are compared with those for buildings with very stiff walls (βk = 2). In this example, the
retaining wall stiffness in the former case is only 0.12 times while that in the latter case is 24 times the
isolator stiffness. Significant difference between the two cases can be observed(Fig. 4.3(d)). Very
soft a retaining wall practically reduces the required gap size to attain a certain collapse capacity. It
even sometimes completely diminishes the necessity of setting any criterion for the gap size because
the retaining walls are so soft that they could rarely have significant effect on the performance of the
building. On the other hand, however, the difference between stiff walls and even stiffer walls is
almost negligible. For example, the results with βk = 1.0 (see Fig.4.3(c) for reference, although the
rubber thickness is different) and those with βk = 2.0 are almost identical.

5. SIMPLIFIED EQUATIONS

Because it is not convenient to demonstrate all the effects of various structural parameters on the
collapse capacity and the required gap size through the above VEC-gap size curves, especially when
these effects become interdependent, some simplified equations describing the relationship between
VEC and characteristic gap sizes, δ1 and δ2, and the influence of some primary parameters would be
useful for engineers in their practical design.

In order to simplify the calculation of the minimum required gap size, δ1, the ascending branch of the
VEC-gap size curve obtained in the above described analysis is linearized. The parts corresponding to
very small and very large collapse capacities are removed from the linearization. Practically, a straight

Figure 4.3. Influence of structural properties: (a) isolation period; (b) amount of dampers;
(c) total height of rubber and (d) stiffness of retaining wall
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Figure 5.1. Linearization for calculating δ1: (a) αs = 0.02, h = 160 mm and (b) αs = 0.06, h = 240 mm

Figure 5.2. Linearization for calculating δ2: (a) αs = 0.02, h = 160 mm and (b) αs = 0.06, h = 240 mm
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line is produced by simply connecting the data point closest to VEC = 80 cm/s and the one closest to VEC
= 240 cm/s, as shown in Fig. 5.1(b). For cases where the maximum VEC (that is the one corresponding
to C0 = 0.4) is less than 240 cm/s, the point at the maximum VEC is used (see Fig. 5.1(a)).

For δ2, the linearization is a little more complicated. First, two points are identified on a single VEC-gap
size curve, that is, the point at which the gap size finally has no more influence on VEC, for example,
those marked as hollow circles ‘ο’ in Fig. 5.2., and the point at which the curve begin to deviate from
that of a greater C0, for example, those marked as ‘×’ in Fig. 5.2. Then the point shares the same VEC
with the ‘×’ point and the same gap size with the ‘ο’ point is found, like those marked as hollow
triangles ‘Δ’ in Fig. 5.2. Finally, these triangle points are regressed to a straight line by least-squares
fitting. Given a demand for collapse capacity, the corresponding δ2 can be read from this straight line.
With this δ2, a strength demand for the superstructure can then be obtained on the restoring force
skeleton curve of the isolation layer, as is shown in Fig. 5.2.

Through data fitting, two extreme points on each of the above straight lines, that is, one at δ1 or δ2 = 0
cm and the other at δ1 or δ2 = 108 cm, are expressed as functions of two primary influencing parameters,
the isolation period, Tf, and the amount of dampers, αs. The function has the form as shown in Eqn.
5.1. It should be noted that this equation is obtain by data fitting and the data range is between VEC =
80 cm/s and VEC = 240 cm/s. In addition, δ2 should always be smaller than the fracture deformation of
the isolator. The degree of approximation is demonstrated in Fig. 5.3 for the two extreme points. It



Table 5.1. Coefficients in Eqn. 5.1

suggests that the proposed equation generally captures the trend of variation of the collapse capacity,
VEC. Given a demand for collapse capacity, the corresponding δ1 and δ2 can be obtained by interpolating
between the two extreme points, that is, VEC at δ1 or δ2 = 0 cm and VEC at δ1 or δ2= 108 cm.

            cTbTaV +⋅+⋅= f
2

fEC
                                                                                     (5.1)

where the value of coefficient a, b and c is given in Table 5.1.

6. CONCLUSIONS

The following conclusions may be drawn from the above discussions.

(1) Collapse capacity is defined for seismically isolated buildings in terms of energy-equivalent
spectral velocity through incremental dynamic analysis. This capacity is found to have an
essentially bilinear relationship with the isolation gap size of the building.

(2) Given the demand for the collapse capacity of an isolated building, the minimum required gap
size to attain this demand, denoted as δ1, can be found.

(3) Another characteristic gap size, beyond which the gap size would have no more influence on
the collapse capacity of the building structure, denoted as δ2, is also recognized. It is practically
the turning point of the above mentioned bilinear relationship. Through δ2, the necessary strength
of the superstructure to attain the required collapse capacity can be determined.

(4) Any gap size greater than δ1 should be acceptable in practical design. With the capacity versus
gap size relationship, the benefit of using gap size greater than δ1 can be quantified in terms of
the increase in the collapse capacity of the building.

(5) A simplified equation of calculating δ1 and δ2 for any given demand of collapse capacity is
established by data fitting. It may serve as a convenient tool for engineers in proportioning the
isolation gap size.

Figure 5.3. Results from analysis and simplified equation: (a) δ1 = 0 cm; (b) δ1 = 108 cm;
(c) δ2 = 0 cm and (d) δ2 = 108 cm
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