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SUMMARY: 
In order to solve the optimization problem of damage detection, a new multi-objective function defined by 
natural frequencies and accumulative modal assurance criterion (MAC) is proposed, and non-dominated sorting 
genetic algorithm II (NSGA-II), multi-objective differential evolution optimization (DEMO) and multi-objective 
particle swarm optimization (CMOPSO) are used for the numerical simulation of damage detection. The results 
show that the combination of the new multi-objective function and DEMO algorithm has the highest calculation 
accuracy and efficiency. 
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1. INTRODUCTION 
 
Damage detection of structures has been developed in the last few decades, is mainly used for 
structural health monitoring (SHM). Traditional damage detection methods are visual or localized 
experimental methods such as ultrasonic, acoustic and magnetic methods, x-ray methods, etc. These 
methods need priori knowledge of the damage distribution and the access to any part of the structure 
should be feasible (Goch et al., 1999). However, the efficiency of the traditional damage detection 
methods is reduced because structures become more complicated. In contrast with these traditional, 
global vibration-based methods would be more suitable for complex and large structures without priori 
information of the damage location. It is well known that occurrence of damage in a structure changes 
the characteristics of the structure, such as stiffness, frequencies, shapes and damping factors, and 
causes some perturbation in its dynamic responses. Global vibration-based methods are based on the 
detection of damage through changes of these characteristics between the damaged and undamaged 
state. Although the identification of modal parameters (frequencies, shape and damping factors) are 
used very popular, modal parameters are difficult to determine the damage position and level of large 
structures or slight damaged structures. Actually, the damage is the reduction of stiffness, using the 
changes of stiffness to detect damage is a more direct and sensitive way. Finite element (FE) model 
updating can be one of the most usual ways to identify the stiffness of structure (Zou et al., 2000). In 
FE model updating, the mass, stiffness and damping parameters of the numerical model can be defined 
as a objective function to measure the fit between numerical and measured data, optimization 
algorithms are used to search these parameters by minimizing the objective function. FE model 
updating has been usually been developed as single-objective optimization problem, but because of the 
complexity of damage detection problem in the real world, multi-objective optimization is more 
suitable to solve the problem than single-objective optimization. Nevertheless, relatively few studies 
have been reported on FE model updating, and many multi-objective intelligent optimization 
algorithms appear to be popular choices (Karamanos et al., 2004, Perera et al., 2010, and Perera and 
Fang, 2010). 
 
In this paper, a FE model updating based on multi-objective intelligent algorithm is carried out for the 
purpose of damage detection. A new multi-objective function defined by natural frequencies and 



accumulative modal assurance criterion (MAC) is formulated. Three multi-objective intelligent 
algorithms, non-dominated sorting genetic algorithm II (NSGA-II), multi-objective differential 
evolution optimization (DEMO) and multi-objective particle swarm optimization (CMOPSO) , are 
introduced briefly. In order to verify the new multi-objective function and compare the performance of 
the three intelligent algorithms, a truss consisting of 31 elements is used for the simulation of damage 
detection. 
 
 
2. MULTI-OBJECTIVE FUNCTION FOR DAMAGE DETECTION 
 
In order to solve the damage detection using on FE model updating, the objective function can be 
defined as various forms of single-objective function with different types of measured data. Certainly, 
single-objective function may contain some information of structural parameters, but just one aspect, it 
usually needs other support to make up for the one-sidedness, such as the structure should not be too 
complex, the measured data should be abundant, the result should not be accurate. Due to this, 
multi-objective function should be a good choice. 
 
Perera et al. (2010) give a multi-objective function consists of a single-objective function based on 
measured modal frequencies and a single-objective function based on mode shapes, it can be improved 
like the following form: 
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In equation (2.1) and (2.2),θ is the vector of parameters (e.g. mass, stiffness, elastic modulus), F1(θ) is 
the single-objective function based on modal frequencies, M is the order of measured modal data, 
ωmeas,i is the measured frequency, ωnume,i is the calculated frequency from numerical model, F2(θ) is the 
single-objective function based on mode shapes, MACi is modal assurance criterion, Φi,meas is the 
measured mode shape, and {Θ} is the search range contains the bounds of each parameter. The 
optimal result of multi-objective function is different from single-objective function, and it is usually 
of a set of optimal solutions and called Pareto optimal solutions. A Pareto optimal solution is defined 
as follows: 
Definition 1: Pareto dominance. The vector [ ]1, , kx x=x L  dominates vector [ ]1, , kx x=x% % %L , 
denoted by x x%p , { } { }1, , , , 1, , :i i i iiff i k x x i k x x∀ ∈ ≤ ∃ ∈ ≤% %L L . 
Definition 2: Pareto optimality. * ∈x χ is said to be Pareto solution if and only if ∃ ∈x χ  satisfies 

*Z( ) Z( )x xp . 
Definition 3: Pareto optimal Set. { }* * * *: , : Z( ) Z( )= ∈ ∃ ∈χ x x χ x χ x xp . 

Definition 4: Pareto front. { }* *: Z( ),= = ∈χ x x x x χ  
The optimal result of Eq. (2.1) is Pareto optimal front consists of many Pareto optimality solutions, 
and the final result for damage detection is one Pareto optimality solution which has the minimum the 
sum of the squares of F1(θ) and F2(θ). 
 



2.1. NSGA-II 
 
The non-dominated sorting genetic algorithm (NSGA) is proposed by Srinivas and Deb (1995) and has 
been a popular non-domination based genetic algorithm for multi-objective optimization. NSGA is a 
very effective algorithm but has been generally criticized for its computational complexity, lack of 
elitism approach and dependency of sharing parameter. In order to improve NSGA, Samir et al. (2000) 
proposed NSGA-II which alleviates all the disadvantages of NSGA. NSGA-II uses rapid 
non-dominated sorting, crowding distance comparison and elitism approach to reduce computational 
complexity from O(mN3) to O(mN2) (where m is the number of objectives and N is the population size), 
ensure the homogeneous distribution and diversity of Pareto front individuals and keep advantageous 
individuals. NSGA-II has been applied widely to solve many optimization problems and become a 
classic. 
 
2.2. DEMO 
 
Differential evolution (DE) algorithm (Storn and Price, 1995) is a heuristic approach that has a great 
ability to solve complex optimization and converges faster and with more certainty than many other 
acclaimed global optimization methods. These advantages of DE make it attractive to extend it to 
solve multi-objective optimization problems. DE for multi-objective optimization (DEMO) proposed 
by Tea and Bogdan (2005) combines the advantages of DE with the mechanisms of Pareto dominance 
and crowding distance sorting. In DEMO, the newly created good candidates immediately take part in 
the creation of the subsequent candidates, this enables fast convergence to the true Pareto front, and 
while the use of nondominated sorting and crowding distance metric in truncation of the extended 
population promotes the uniform spread of solution. 
 
2.3. CMOPSO 
 
Particle swarm optimization (PSO) is an evolution computation technique developed by Kennedy and 
Eberhart (1995), inspired by social behavior of bird flocking or fish schooling. PSO is simple in 
concept and easily implemented, it has been successfully used to solve many single-objective 
optimization problems and shown to have high performance and flexibility.  The advantages of PSO 
have made it to be extended for multi-objective optimization, and such extended PSO is referred as 
multi-objective particle swarm optimization (MOPSO). Many of MOPSO methods have been 
proposed in the literature, and the MOPSO developed by Coello and Lechuga (2002) is one of the 
earliest MOPSO and considered as a milestone. This MOPSO is marked as CMOPSO to differentiate 
MOPSO. CMOPSO uses Pareto dominance to determine the flight direction of a particle and 
maintains previously found nondominated vectors in a global repository that is later used by other 
particles to guide their own flight. 
 
 
3. NUMERICAL EXAMPLE  
 
A numerical example is a truss-type structure, which contains 31 truss elements, 17 nodes and 30 
nodal DOFs as shown in Fig.1. Values of the material and geometric properties are as follows: the 
elastic modulus E=2.06E+11 Pa; the cross-sectional area A= 0.01m2; the mass density ρ=7.85E+03 
kg/m3; the length of each bay l=1.00m. The measured data is three lowest vibration modes calculated 
by using finite element method. The reduction of elastic modulus is used to represent the damage, the 
reduction ratio of elastic modulus represents the damage level, and the element number represents the 
damage position. Assuming the elements 2, 4, 6, 11, 22 and 28 are damaged with reduction ration 0.1, 
0.2, 0.3, 0.4, 0.5 and 0.6. 
 



 
Figure 1. 31 elements truss structure for damage detection simulation 

 
The numerical example is used to check the performance of the NSGAII, DEMO and CMOPSO with 
multi-objective function Eq. (2.1). Each algorithm is executed 5 times and chooses the best result, and 
the control parameter settings are shown in Table 3.1. 
 
Table 3.1. Control parameter settings of each intelligent algorithm 
Algorithm Control parameters 
NSGAII NP=50; Pc=0.7; Pm=0.08; searching range=[0,1] 
DEMO NP=50; F=0.5; Cr=0.9; searching range =[0,1] 
CMOPSO NP=50; w=0.8; c1= c2 =2; Ncube=200; searching(velocity) range =[0,1] 
 
In Table 3.1, the control parameter settings, NSGAII referring GA (YU Youming et al., 2006): NP is 
population (total number of individuals) size and is usually set to 1.5 times of the size of the 
parameters vector, Pc is crossover factor and is usually set to [0.4,0.9], and Pm is mutation factor and 
is suggested to set [0.0001,3]; DEMO (Rönkkönen et al., 2005): NP should be set from 2 times to 40 
times dimension of parameters, F is mutation factor should be [0.4,0.95], and Cr is crossover factor 
[0.9,1]; CMOPSO referring PSO: NP is usually set from 20 to 80, w is the inertia weight should be set 
0.8 (Eberhart and Shi 2000), c1 and c2 are the acceleration coefficients and c1 = c2 =2 suggested by 
Cralisle and Dozier (2001), and Ncube is the number of hypercubes should be set 30-50. 
 
Fig. 2, Fig. 3, and Fig. 4 show the results obtained by NSGAII, DEMO and CMOPSO respectively, 
from these figures, it can be seen that the Pareto front obtained by DEMO has the smallest values of 
both F1 and F2 of Eq. (2.1) and the reduction factor of the modulus elastic of each element identified 
by DEMO perfectly match the assuming damage. The Pareto front and the reduction factor obtained 
by NSGAII and CMOPSO have too large errors to detect the damage of the structure. 
 

 
Figure 2. Pareto front and reduction ratio obtained by NSGAII 

 



 
Figure 3. Pareto front and reduction ratio obtained by DEMO 

 

 
Figure 4. Pareto front and reduction ratio obtained by CMOPSO 

 
 
4. CONCLUSION  
 
In order to solve the optimization problem of damage detection based on finite element (FE) model 
updating, a new multi-objective function defined by natural frequencies and accumulative modal 
assurance criterion (MAC) is proposed, and non-dominated sorting genetic algorithm II (NSGA-II), 
multi-objective differential evolution optimization (DEMO), and multi-objective particle swarm 
optimization (CMOPSO) are introduced briefly. A numerical simulation of truss structure shows that 
by optimizing the new multi-objective function DEMO identified the assuming damage position and 
level accurately, and NSGA-II and CMOPSO failed. The numerical results demonstrate that using the 
proposed multi-objective function and DEMO to detect structural damage is effectual. 
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