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SUMMARY:  
Various stress-strain models have been proposed for a dynamic response analysis of ground. Most of these 
models, however, cannot represent “S-shaped” hysteresis loop of stress-strain relationship, which appears at 
large level of strain, because their hysteresis curves are formulated on the basis of the Masing’s rule. To solve 
this kind of problem, we propose a new model, which is called GHE-S model. For the GHE-S model, we 
introduce a modified Masing’s rule. In the modified Masing’s rule, a similarity function, which is a quadratic 
function, is introduced. The proposed model is defined by eight parameters. These parameters should be 
determined through results of cyclic loading tests. However, it is not always carried out for all the samples of soil 
layers, because the cyclic loading test is costly. Therefore, we also provide standard values of eight parameters 
for the proposed model. 
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1. GENERAL INSTRUCTIONS 
 
It is very important for the earthquake engineering to evaluate seismic behavior at surface of ground. 
A dynamic response analysis is often used to estimate the response of sediments. For dynamic 
response analyses, not only accurate information of ground properties but also constitutive model of 
stress-strain relationship for soil is necessary. Various stress-strain models have been proposed for a 
dynamic response analysis of ground. Classical models include Hardin-Drnevich model [1], 
Ramberg-Osgood model [2] and so on. They are often used for dynamic response analysis, because 
classical models are very simple, in which only one or two parameters are required, and can be applied 
readily to various problems. However, these models cannot satisfy any results of stress-strain 
relationship obtained from cyclic loading tests perfectly. On the other hands, to solve such kind of 
problem, improved models have been proposed by Ishihara et al. [3], Nishimura and Murono [4] and 
so on. For example, Ishihara’s model [3] can satisfy any results of hysteresis damping obtained from 
cyclic loading tests by modification of unloading stiffness to fit the hysteresis damping.  
 
Most of these models, however, cannot represent “S-shaped” hysteresis loop of stress-strain 
relationship, which appears at large level of strain, because their hysteresis curves are formulated on 
the basis of Masing’s rule. To solve this kind of problem, we have proposed a new model, which is 
called GHE-S model [5]. For GHE-S model, we have introduced a modified Masing’s rule instead of 
conventional Masing’s rule. GHE-S is defined by eight parameters. These parameters should be 
determined through results of cyclic loading tests. However, it is not always carried out for all the 
samples of soil layers, because the cyclic loading test is costly. Therefore, we also provide standard 
values of eight parameters for the proposed model. 



2. STRESS-STRAIN RELATIONSHIP OF SOILS 
 
Figs. 2.1 and 2.2 show hysteresis loops of stress-strain relationship, which is obtained from cyclic 
torsional shear test for a soil. A maximum strain is small in Fig. 2.1 and is large in Fig. 2.2. Shear 
stiffness, G , is defined by secant modulus at reversal points as shown in Fig. 2.3. Initial shear 
stiffness, 

maxG , is shear modulus at infinitesimal strain;  =10-6 to 10-5. Hysteresis damping, h , is 
defined as  
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1   ,  (2.1) 

where, LA  and TA  are the area of the hysteresis loop in Fig. 2.3 and the area of the triangular in Fig. 
2.3, respectively. 
 
A normalized shear stiffness ratio, 

maxGG , decreases with increasing the strain,  , in Fig. 2.4, 
because of plastic properties of soils. The hysteresis loop at small level of strain is generally 
represented as a “spindle-shape” of Fig. 2.1. Therefore, a hysteresis damping, h , increases with the 
strain,  , as shown in Fig. 2.4. On the other hand, the hysteresis curve shows an “S-shape” of Fig. 2.2 
in a case where the strain exceeds approximately 1%. Thus, the hysteresis damping, h , decreases with 
the strain,  , as red crosses in Fig. 2.4.   
 
As described in Chapter.1, most of conventional stress-strain models cannot represent “S-shape”, 
which appears at large level of the strain. We, therefore, have already proposed a new model, which is 
called GHE-S model [5]. However, we show the outline of GHE-S model in the following chapter 
again, because the concept of GHE-S model is very important in this paper.  
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Figure 2.1 Hysteresis loop at small level of strain Figure 2.2 Hysteresis loop at large level of strain

Figure 2.3 Definition of G , 
LA  and 

TA  Figure 2.4 
maxGG -  and h -  relationship 
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3. GHE-S MODEL  
 
3.1. Skeleton Curve 
 
A skeleton curve of GHE-S model is defined by GHE (General hyperbolic equation) model [6]. GHE 
model is represented by the generalized hyperbolic equation: 
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where,   stands for shear stress of soils, 
f  for shear strength of soils,   for shear strain of soils, 

and reference shear strain of soils, r , is defined as 

maxG
f

r


    .  (3.2) 

 
Corrective coefficients,  rC 1  and  rC 2  are obtained from 
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Stress-strain relationship of GHE model can be applied to various strain levels, namely, from 
infinitesimal strain to failure strain of soil. This means that GHE model can satisfy any results of 
stress-strain relationship obtained from cyclic loading tests. GHE model consists of six parameters, 
which are  01C ,  1C ,  02C ,  2C ,   and  . From Eqns.3.1 and 3.3,   0.101 C  is obtained 
as 0  and from Eqns.3.1 and 3.4,   0.12 C  is obtained as  . Four unknown parameters, 
therefore, should be determined. These parameters can be determined from results of cyclic loading 
tests. 
 
3.2. Hysteresis Curve 
 
3.2.1. Hysteresis rule  
Conventional stress-strain models apply to Masing’s rule for the hysteresis loop. In conventional 
Masing’s rule, an enlarged skeleton curve is used to express the hysteresis loop in unloading and 
reloading processes. A procedure to generate a hysteresis loop is shown in Fig. 3.1. For example, 
when the unloading process occurs at a reversal point,  aaA  ,  of Fig. 3.1 on the skeleton curve, the 
hysteresis curve of blue lines is formed by enlarging the skeleton curve,   f  of red line. The 
hysteresis curve depends on the homothetic ratio,   as follows: 




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
 








 aa f   .  (3.5) 

A homothetic ratio,  =2.0, is generally chosen as the hysteresis loop at any strain, because the 
hysteresis loop needs to be connected to the point B smoothly, which is the symmetric point of A with 
respect to the origin. As a result, only spindle-shaped hysteresis loop is drawn. 
 
In order to connect the hysteresis loop smoothly from the point A to the point B in Fig. 3.1,   should 



be equal to two only around the neighbourhood of reversal points, A and B. It is not necessary to be 
two between A and B. We, therefore, introduce a modified Masing’s rule. The homothetic ratio,  , is 
defined as a function of strain for the modified Masing’s rule: similarity function   , is introduced. 
S-shaped hysteresis loop can be realized by the similarity function, which depends on strain. We adopt 
a quadratic function, which passes through    aa   =2, as the similarity function in Fig. 3.2, 
because hysteresis curves of the modified Masing’s rule with a quadratic function resembles those of 
cyclic loading tests for soil in their shapes. Practically, min  of Fig. 3.2 is determined from hysteresis 
damping of cyclic loading test. 
 

 
 
3.2.2. Relationship between hysteresis damping and strain  
A relationship between hysteresis damping, h , and strain,  , obtained from cyclic loading test is 
discrete data. One can use a linearly interpolated function of the discrete data, however we use a 
continuous function defined as  
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The hysteresis damping h  is expressed as a function of 

maxGG  with parameters of 
maxh  and 

p . 
Eqn. 3.6 is not a function of   explicitly, though h -  relationship can be obtained by substituting 
Eqn. 3.1 and the relationship   G  into Eqn. 3.6. The parameters of 

maxh  and 
p  can be 

determined by fitting to results of cyclic loading test. 
 
3.2.3. Unloading stiffness  
In general case, the unloading stiffness is constant and identified with initial shear stiffness, 

maxG . 
Yoshida et al. [7], however, pointed out that the unloading stiffness shows non-linear characteristics. 
We, therefore, introduce Yoshida’s formula for the unloading stiffness: 
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where, 
0G  and

maxG  are unloading and initial shear stiffness, respectively, 
maxmin GG  ratio of 

minimum shear stiffness,   shear strain and 
0r  reference strain for unloading stiffness. Typical 

values of the parameters are provided by Yoshida et al. as listed in Table 3.1. 

Figure 3.1 Hysteresis loops with some homothetic ratio Figure 3.2 Concept of modified Masing’s rule 
(Above: hysteresis loop, below: similarity function)
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Table 3.1 Values in Eqn. 3.7 

Soil 0r  
maxmin GG  

Sand (Dr*1=50%) 0.0006 0.18 

Sand (Dr*1=80%) 0.0015 0.35 

Clay 0.013 0.1 

*1: Dr is relative density of soil. 

 
3.3. Numerical Example 
 
To confirm the proposed model, a numerical calculation is carried out. Input wave to the base is 
sinusoidal wave, in which the amplitude of acceleration increases gradually at a frequency of 2Hz. The 
calculated hysteresis loop of stress-strain relationship is shown in Fig. 3.3. It is observed that a 
spindle-shaped hysteresis curve can be drawn for small level of the strain in blue and that the shape of 
the hysteresis curve morphs into S-shape with the strain (e.g. green line).   
 

 
 
 
4. STANDARD VALUES FOR THE PARAMETERS 
 
The proposed model is defined by six parameters for 

maxGG -
r  relationship and by two 

parameters for h -
r  relationship. These parameters should be determined through results of cyclic 

loading tests, such as cyclic torsional shear test. It is not always carried out for all the samples of soil 
layers, because the cyclic loading test is costly. We, therefore, provide standard values of eight 
parameters for the proposed model. In order to determine the standard values, we use results of cyclic 
loading tests, which were carried out with twenty samples under undrained condition. These tests are 
carried out under various conditions of confined pressure, type of soil, and so on. 
 
4.1. Relationship between shear stiffness ratio and shear strain 
 
Fig. 4.1 shows 

maxGG -
5.0  relationship obtained from 20 experiments, where 

5.0  is the strain at 

5.0max GG  in 
maxGG -  relationship from cyclic loading test. It is seemed that 

maxGG -
5.0  

relationship is distributed within a narrow range in spite of various conditions of confined pressure, 
type of soil, and so on. Kiyota et al. [8] pointed out that 

maxGG -
5.0  relationship is distributed 

within a narrow range regardless of confined pressure. From here onwards, we assume that 

maxGG -
5.0  relationship is independent of confined pressure and soil type. 

Figure 3.3 Hysteresis loop of a numerical calculation
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From Eqn. 3.1, GHE-S model requires the reference strain, 

r  of Eqn. 3.2 in order to introduce the 
dependency of shear strength, 

f . However, in a case where 
5.0  is used as the reference strain 

instead of 
r , an important properties, that is the dependency of shear strength, is definitely lost. To 

avoid this problem, we introduce the follows:  

5.05.2  r   (4.1) 

This equation is empirically determined using results of cyclic loading tests as shown in Fig. 4.2. 
Furthermore, in a case where the reference strain is 

r ,   0.12 C  as   from Eqns. 3.1 and 
3.4. On the other hand, if the reference strain is 

5.0 ,   5.22 C  as  . There are two reasons 
why 

5.0  is chosen to normalize the strain,  . Firstly, variances of 
maxGG -

5.0  relationship are 
smaller than one of 

maxGG -
r  relationship. This means that 

5.0  can provide stable normalized 
strain. Secondly, we can apply the results by many researches to determine 

5.0  without any 
experiments, though many experiments are necessary under various soil conditions to determine 

r .  
 
Twenty datasets of values for six parameters are obtained fitting 

maxGG -
5.0  relationship to results 

of twenty cyclic loading tests under the assumptions: small variances of 
maxGG -

5.0  relationship 
and Eqn. 4.1. The standard values of parameters are defined as the averaged values of datasets. Table 
4.1 shows the obtained standard values. 

maxGG -
5.0  relationships are shown in Fig. 4.3, which 

includes results of twenty cyclic loading tests (red crosses), results by previous researches [9]-[15] 
(blue triangles) and “standard curve” determined from standard values (green line). It is observed that 
the standard curve agrees well with previous researches. 

 
Table 4.1 Standard values in Eqns. 3.3 and 3.4 

 01C   1C   02C   2C      

1.000 0.170 0.830 2.500 2.860 3.229 

Figure 4.1 
maxGG -

5.0  relationship obtained from 

cyclic loading tests  
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Figure 4.3 
maxGG -

5.0  relationship with “standard curve” 
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4.2. Relationship between hysteresis damping and shear strain  
 
Standard values for h -  relationship are determined in the same way as 

maxGG -
5.0  relationship. 

Figs. 4.4 (a) and (b) show h -
5.0  relationship for sandy soils and clayey soils, respectively. In Fig. 

4.4 (a), h -
5.0  relationships show large variations, because hysteresis damping of sandy soil is 

affected by various conditions, such as excess pore water pressure, fraction content, confined pressure 
and so on. However, results of cyclic loading tests are not enough to consider various conditions.  
 

 
In general, hysteresis damping h  of clayey soil is relatively smaller than that of sandy soil. We, 
therefore, divide soils into two types, that is, sand and clay to determine standard values for h -

5.0  
relationship. The standard values for h -

5.0  relationship are determined from the averaged values 
of results by cyclic loading tests. The obtained values are listed in Table 4.2 and Fig. 4.5. The legends 
of Fig. 4.5 are the same as Fig. 4.3. From this figure, the standard curves also agree with the results by 
the previous researches. 
 

 
 

Table 4.2 Standard values in Eqn. 3.6 

Soil maxh  p  

Sand 0.21 1.31 

Clay 0.19 1.29 

Figure 4.4 h -
5.0  relationship obtained from cyclic loading tests 

(a) Sandy soils (b) Clayey soils 
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Figure 4.5 h -
5.0  relationship with “standard curve” 

(a) Sandy soils (b) Clayey soils 
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5. CONCLUDING REMARKS 
 
Various stress-strain models have been proposed for a dynamic response analysis of ground. Most of 
conventional models, however, cannot represent the stress-strain relationship with “S-shape”, which 
appears at large strain levels. We, therefore, have proposed a new model, which is called GHE-S 
model. GHE-S model consists of the skeleton curve expressed by GHE (general hyperbolic equation) 
model and the hysteresis curve expressed by a modified Masing’s rule. The proposed model has eight 
parameters. These parameters should be determined by results of cyclic loading tests. Cyclic loading 
tests, however, is not always conducted for all the soils at a target site. We also proposed standard 
parameters of GHE-S model in order to apply the model to a site, where there are no results of cyclic 
loading test. 
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