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4. NUMERICAL RESULTS 
  

In order to study the nonlinear dynamic response of the BI, BIPS and BISS structures subjected to near-fault 
ground motions, a numerical investigation is carried out by using a step-by-step procedure (Mazza and 
Vulcano, 2010). At each step of the analysis, plastic conditions are checked at the potential critical sections 
of the girders and columns using a bilinear model with a hardening ratio of 5%. In order to take into account 
the plastic deformations along the girders, each of them is discretized into four sub-elements of equal length; 
in this way, the potential critical sections correspond to end, quarter-span and mid-span sections in Figure 3b. 
In the Rayleigh hypothesis, the damping matrix of the superstructure is assumed as a linear combination of 
the mass and stiffness matrices, assuming a viscous damping ratio of 2% in both the horizontal (H) and 
vertical (V) directions with reference to the two vibration periods (T1H and T1V) corresponding to higher- 
participation modes with prevailing contributions in the horizontal and vertical direction, respectively. The 
local damage undergone by the frame members is evaluated considering the ductility demand calculated in 
terms of curvature, with reference to the two loading directions, assuming as yielding curvature for the 
columns the one corresponding to the axial load due to the gravity loads. The response of the isolation 
systems is simulated using the relationships and the models described in Section 2. The ultimate values of the 
total shear strain (tot,u) and the corresponding shear strain due to seismic displacement (s,u) of a HDLRB are 
assumed equal to 7.5(=1.55) and 3(=1.52), respectively (i.e. 1.5 times the design values); moreover, the 
compressive and tensile axial loads are limited, respectively, to the critical buckling load (Pcr), evaluated 
according to the Equation 2a, and the tensile value (Ptu), obtained multiplying the reduced effective area by a 
limit stress tension tu=0.7 MPa. The sliding friction coefficient F is evaluated for mean values of contact 
pressure and temperature, e.g. assuming min=3%, max=15% and =0.02 s/mm in the Equation 4b (see 
Dolce et al., 2005). According to the design hypotheses adopted for the test structures (i.e. subsoil class D 
and high-risk seismic region), accelerograms recorded on soft soil, with a PGAH value approximately 
comparable with the one prescribed by NTC08 (PGAH=0.404g), are considered. More specifically, 
near-fault ground motions recorded at Taiwan in 1999 (Chi-Chi TCU068 station: E-W and vertical 
components) and Imperial Valley in 1979 (El Centro D.A. station: horizontal, 360, and vertical components), 
available in the Pacific Earthquake Engineering Research center database (PEER, 2008), have been 
considered. It is interesting to note that large horizontal pulses have been observed in the Chi-Chi 
earthquake; on the other hand, the El Centro D.A. earthquake is characterized by a high value of the 
acceleration ratio PGA(=PGAV/PGAH). 
Firstly, in order to emphasize the effects due to the horizontal and vertical components of near-fault ground 
motions on the inelastic response of the superstructure, the numerical investigation is carried out with 
reference to the BI (Figures 5a,b), BIPS-A (Figures 5c,d) and BISS-A (Figures 5e,f) base-isolation systems. 
To this end, mean ductility demand at all the floor levels is reported for the end-sections (Figures 5a,c,e: 
Chi-Chi ground motion) and mid-span sections (Figures 5b,d,f: El Centro D.A. ground motion) of the 
girders. For the sake of brevity, only the results for the central frame, having a tributary area for gravity loads 
greater than those corresponding to the lateral and interior frames (see Figure 3a), are reported for three 
values of the nominal stiffness ratio K0=KV0/KH0i.e.200, 800 and 2000). It should be noted that the 
nonlinear dynamic analyses are stopped at the time when a limit state is reached: i.e., the total shear strain of 
the HDLRBs or the ductility demand at the end-sections of the girders, under Chi-Chi motions; the ductility 
demand at the mid-span sections of the girders, under El Centro D.A. motions. Afterwards, in order to make 
the results comparable, the analyses have been carried out once again assuming as final instant of simulation, 
for each ground motion and base-isolation system, the minimum value among those before evaluated. The 
results obtained for Chi-Chi ground motion (Figures 5a,c,e), characterized by high values of the (horizontal) 
pseudo-acceleration in the range of rather long vibration periods (i.e. T1H≥2.5 s), have highlighted that 
unexpected ductility demand are induced at the lower floors. This result is more evident for BIPS-A 
structures (Figure 5c), whose behaviour in the horizontal direction is that of a fixed-base structure until the 
friction threshold imposed by the sliding bearings is not exceeded. Moreover, it is interesting to note that, in 
all cases, a limited influence of K0 value on the ductility demand is observed. As observed in a previous 
work (Mazza and Vulcano, 2012), the E-W component of Chi-Chi earthquake induces also ductility demand 
at the end sections of columns, especially at the lower storeys. On the other hand, under the El Centro D.A. 
ground motion (Figures 5b,d,f), characterized by high values of the (vertical) pseudo-acceleration at least for 
rather low values of the vibration periods (i.e. T1HV<0.16 s), the mid-span sections of the girders undergo 
increasing plastic deformations for an increasing K0 value, especially at the upper floors. This behaviour can 
be explained observing that for rather low values of K0 (e.g. K0=200) the superstructure above the BI and 
BISS-A systems can be considered as isolated along the vertical direction, exhibiting a basically elastic 



behaviour, while for rather high values of K0 (e.g. K0=2000) the same superstructure can be assumed as a 
fixed-base structure with reference to the same direction. Moreover, a behaviour similar to that of a 
fixed-base structure is expected in the vertical direction for the BIPS-A systems.  
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Figure 5. Effects of the nominal stiffness ratio K0(=KV0/KH0) on the ductility demand of BI, BIPS and BISS structures. 
 

Analogous curves to those shown above for the girders are reported in Figure 6 to compare the response of 
the BIPS and BISS base-isolation systems assuming, for a same value of K0 (i.e. K0=800), three different 
in-plan configurations of elastomeric and sliding bearings (see Figure 4). Moreover, curves corresponding to 
the BI structure are also reported for a comparison. As regards the ductility demand of the end sections, the 
results show that for Chi-Chi ground motion (Figures 6a,c,e) both the BIPS and BISS systems have not 
improved the performance of the superstructure which becomes even worse of that observed for the BI 
structure. This is evident for increasing values of the nominal sliding ratio S0(=FS0/FS0,max) when using BIPS 



systems (see Table 1), because the structural behaviour in the horizontal direction tends to become 
ever-closer to that of a fixed-base structure. The BISS systems prove to be generally more effective than the 
BIPS ones for controlling the structural damage of the framed structure, producing elongation of the 
effective fundamental vibration period, thus limiting the maximum horizontal acceleration transmitted to the 
superstructure. On the other hand, ductility demand of the mid-span sections are plotted in Figure 6b,d,f for 
BIPS and BISS systems subjected to Imperial Valley ground motion. As can be observed, the in-plan 
configuration of elastomeric and sliding bearings proves of little importance, producing only moderate 
differences of the ductility demand at the upper floors where it is still higher than that obtained for the BI 
structure. Moreover, it is worth noting that the influence of S0 is less evident for El Centro D.A. motion than 
for Chi-Chi one. The ductility demand for the columns, not shown for the sake of brevity, increases for 
increasing values of K0, at the top storey. 
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Figure 6. Effects of the nominal sliding ratio S0(=FS0/FS0,max) on the ductility demand of BI, BIPS and BISS structures. 



The response of the base-isolated structures is strongly affected by the behaviour of the elastomeric and 
sliding bearings. To this aim, the effectiveness of the BIPS and BISS systems in controlling the isolator 
displacement has been investigated for different values of S0. More specifically, time histories of the total 
shear strain (tot) for the central isolator of the BI800, BIPS-A800 and BISS-A800 systems subjected to 
Chi-Chi ground motion are plotted in Figure 7a. For all cases the failure occurs before the end of motion, 
because the limit value tot,u is exceeded. In Figure 7b, analogous curves represent time histories of the 
horizontal displacement of elastomeric and/or sliding bearings for the exterior isolator of the central frame. 
As can be observed, the BIPS-A800 system is resulted the most favourable to control the isolator 
displacement, at least in the first 10.5 s, because the behaviour is similar to that of a fixed-base structure until 
the friction threshold of the sliding bearings is not reached. Residual displacement of the sliding bearings is 
plotted in Figure 8 for different in-plan configurations of the BIPS (Figure 8a) and BISS (Figure 8b) systems 
subjected to Chi-Chi ground motion. It should be noted that both systems can need re-centring after an 
earthquake in case the restoring force of the HDLRBs does not exceed the friction threshold of the sliding 
bearings. More specifically, BIPS and BISS systems undergo increasing residual displacements for 
increasing values of S0. Moreover, the re-centring of the BISS systems may be difficult when the residual 
displacement is a combination of out-of-phase movements of HDLRBs and corresponding sliding plates. 
Finally, histograms representing the minimum axial load (Pmin) and the ultimate tensile axial load (Ptu) in the 
central isolator of the lateral frame are plotted in Figure 9 for BI, BIPS and BISS systems subjected to El 
Centro D.A. ground motion. More specifically, different values of S0 are assumed for both the BIPS and 
BISS systems, considering a same value of K0 (i.e. K0=800). As can be observed, tensile axial loads have 
been attained for the isolator of the BI, BIPS-A and BIPS-B structures but the Ptu value has never reached. 
Moreover, the maximum (compressive) axial load in the isolators, not shown for brevity, proves to be much 
less than the corresponding critical buckling load (Pcr). 
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Figure 7. Time histories for base-isolation systems of BI, BIPS and BISS structures. 
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Figure 8. Residual displacement of the sliding bearings for BIPS and BISS structures. 
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Figure 9. Axial load of the isolators for BI, BIPS and BISS structures. 

 

 
5. CONCLUSIONS  
 
The nonlinear seismic response of five-storey r.c. base-isolated framed structures, with different in-plan 
combinations and configurations of elastomeric and sliding bearings, has been studied under near-fault 
ground motions. Different values of the nominal stiffness ratio K0, for the HDLRBs, and nominal sliding 
ratio S0, for the steel-PTFE sliding plates, are considered. Under a pulse-type horizontal component of a 
near-fault motion, the adoption of BI, BIPS and BISS systems can induce unexpected ductility demand at the 
end sections of both girders and columns, especially at the lower floors. This result is more evident for 
increasing values of S0, especially when using a BIPS system whose behaviour in the horizontal direction 
tends to become ever-closer to that of a fixed-base structure. A high value of the peak vertical acceleration of 
the ground motion produces ductility demand rather evident at the mid-span sections of the girders, 
especially in the upper floors when assuming a rather high value of K0 for which the superstructure behaves 
like a fixed-base structure in the vertical direction. The BIPS system is more effective than the BISS one for 
controlling the horizontal displacement of the isolation system; both systems can need re-centring after an 
earthquake in case the restoring force of the HDLRBs does not exceed the friction threshold of the sliding 
plates corresponding to the S0 value. Finally, when the vertical component of the ground motion is 
considered, the isolators can undergo tensile loads. 
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