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SUMMARY:  

The problem of SH-waves scattering caused by a subsurface arbitrary shape of inclusion and a nearby crack is 

studied in current paper based on the methods of conformal mapping, Green’s function and multi-polar 

coordinates. Firstly, the wave field scattered by the inclusion under incident SH-waves is deduced according to 

zero-stress condition at horizontal interface. A suitable Green's function, the essential solution to the 

displacement field for the elastic space possessing an inclusion while bearing out-plane harmonic line loads at an 

arbitrary point, is then constructed to create a crack combined with the technique of “crack-division” method. 

Thus expressions of displacement and stress are established at the existence of the crack and the inclusion under 

incident SH-waves. Finally, some numerical examples are given to present variation of the ground motion of 

horizontal surface in the elastic half space containing arbitrary shape of inclusion and a crack with respect to 

different parameters. 
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1. INTRODUCTION 

 

Elliptical inclusion commonly appears in matrix in earthquake engineering. Since nature is in eternal 

motion and change, the media, artificial materials or structures inevitably produce various defects and 

uneven distribution of the formation also give rise to large amounts of heterogeneity, such as small 

faults, joints, multiple lens, etc., which distribute arbitrarily. These structures with diverse distribution 

can be simplified to be cracks in engineering practice. Therefore, study on interaction of inclusion and 

cracks under SH wave is of great significance and can provide references for earthquake engineering, 

which has been reported by numerous specialists. In this paper, the earthquake resistance problem of 

SH-wave scattering caused by an elliptical inclusion and a crack in elastic half-space is investigated 

scrupulously. 

 

 

2. STATEMENT OF THE PROBLEM 

 

Figure 1 shows an elastic model with an elliptical inclusion and a crack under incident SH-wave with a 

incident angle α . Media Ⅰand media Ⅱ have different material constants (
1 1

ρ µ, ; 
2 2
,ρ µ ). Three 

coordinates are given in the figure and the relation of them is defined by 
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Figure 1. Half Space Model with an Elliptical Inclusion and a Crack under Incident SH-wave 

 

 

3. THE SCATTERING WAVES AROUND THE ELLIPTICAL INCLUSION  

 

3.1. Governing Equation 

 

In an isotropic medium, to study the scattering of SH-wave is the easiest issue of elastic wave 

scattering. Inducing conformal mapping function ( )( )z R mω η η η= = + (
i

Re
θη = , 

( ) 2R al bl= + ， ( ) ( )m al bl al bl= − + ， al and bl represent the length of semi-major axis and 

semi-minor axis of the elliptical inclusion, respectively), the displacement W  impacted by the 

incident wave should satisfy the governing equation 
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in which, s= /ck ω , ω  is the circular frequency of the displacement function, 
sc µ ρ=  stands for 

the velocity of the shear wave. ρ and µ are the mass density and shear modulus of the medium 

respectively. 

 

In polar coordinate, the corresponding stresses are given by 

 

( ), ( )
( ) ( )

rz z

W W i W W

R R
θ

µ µτ η η τ η η
ω η η η ω η η η

∂ ∂ ∂ ∂= + = −
′ ′∂ ∂ ∂ ∂

           (3) 

 

3.2. The Scattering Wave in District    ⅠⅠⅠⅠ 
 

According to the symmetry of the scattering wave, multi-polar coordinates is applied to construct the 

scattering wave in the medium induced by the elliptical inclusion, which should satisfy the governing 

equation (2) and Sommerfeld radiation condition for infinite distance beside the zero-stress condition 

at the horizontal interface. 

 

Inη  plane, 
( )

1

sW  can be expressed by 
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where nA  are the unknown coefficients, determined by the boundary condition of the elliptical 

inclusion. 

 

3.3. The Standing Wave in DistrictⅡⅡⅡⅡ 
 

In the mapping plane, the standing wave inside of elliptical inclusion is deduced as 
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where nB is the unknown coefficient determined by the boundary condition. 

 

 

4. GREEN’S FUNCTION 

 

The Green’s function 
1G  denotes an essential solution to the displacement field for an elastic 

half-space containing an elliptical inclusion while bearing out-plane harmonic linie loads at arbitrary 

point, which is expressed as
i te ω−
and satisfies the governing equation (2). 

 

In a half elastic space, the incident wave 
( )i

G excitated by the out-plane line load takes the form of 
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The reflected wave field caused by horizontal interface can be indicated as 
( )r

G , then 
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The scattering wave 
( )
I

s
G  excited by the inclusion and the standing wave 

II

t
G in the inclusion take the 

forms of Eq.(4) and Eq.(5), respectively. 

 

In the complex plane ( ),z z , the boundary condition can be expressed as 
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Substitution of Eqs.(6), (7) and the expressions of 
( )
I

s
G and into Eq.(3), the corresponding stresses can 

be derived, then substituting these expressions into boundary conditions (8), the coefficients 
nA and 

nB will be solved. 

 

The total wave field is 
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5. SCATTERING OF SH-WAVE BY ELLIPTICAL INCLUSION AND CRACK NEAR 

INTERFACE 

 

This study can be treated as the problem of earthquake resistance. Showed as Figure 1, a steady 

SH-wave is incident from downside with an angle α  in half-space, a reflected SH-wave 
( )r

W  

occurs owing to the interface. Introducing a conformal mapping function ( )z ω η= , in mapping plane 

η , 
( )i

W  and 
( )r

W  take the forms of   
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where
0W is amplitude of incident wave,α represents the incident angle. 

 

The scattering wave ( )sWΙ and the standing wave 
II

tW excited by the elliptical inclusion can be described 

as Eqs.(4) and (5), respectively. And the process of solving nA and nB is the same as that of the 

Green’s function discussed in preceding paper 
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The total wave field of domain I can be obtained 
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The total stresses can be also performed. If additional stresses which have same magnitude but opposite in 

direction are applied at the same point, the ultimate stresses will be zero. Therefore, when a pair of forces 

with the same magnitude but opposite in direction are loaded at the region where the crack will be created, 

the resultant forces will be zero, then a crack is created. 

 

Then we can obtain the total wave field in domain I when a crack coexists with the inclusion 
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6. RESULTS AND DISCUSSION  

 

Numerical examples are provided here to discuss influence rule of various parameters such as the wave 

number 1k , the incident angle α , the ratio of wave number 
*

1 2
k k k= , the ratio of shear modulus 

*

2 1
µ µ µ=  et al. on gound motion of horozontal surface. The expression of surface displacement is 

difined as Eq. (13). 

 

Figure 2 illustrates that the hader the inclusion is, the more strongly the surface displacement W  varies. 

Plotted by Figure 3, in the case of 1 0.1k = , namely quasi-static, W  changes slightly and the 

magnitude keeps around 2.0, while 
1
k  increases, the variation W  shows more and more obvious 

oscillation characteristics. Under circumstances of 0α = o

, 30
o

and 45
o

, with the increasing of 
1
k , 

W  of left-side varis more strongly, while SH wave is incident veritically, W  has symmetry change, 

as shown as Figure 3(b), (c) and (d). 

 

From Figure 4(a) to Figure 4(e), it can be demonstrated that the crack angle β  influences slightly on 

horizongtal surface displacement; in addition, as the burial depth h  of the inclusion increases, the 

variation of W  tends to be stable. Seen from Figure 4(b), (d) and (f), as the crack angle increases, 

W  changes more and more distinctly and then tends to be stable with 1h . W min  appears at 

2 0.0x = ( 1 5.0h = ), about 1.45. 

 

Shown as Figure 5, the increase of incident angle α , the variation curve of surface displacement W  

prensents gradual amplification along 2x ; besides, the increasing of the lengh of crack 2a  gives rise 

to the augment of surface displacement W  of the side containing the crack, and W max achieves 

4.75 while SH wave is incident vertically. With bl al increases,  the amplitude of W  becomes 

great but not too much, which can be demonstrated in Figure 6. 
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Figure 2. Variation of W  with the Ratio of Matrix to Inclusion 
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Figure 3. Variation of W  with 
1
k  
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Figure 4. Variation of W  with h and
1
h  
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Figure 5. Variation of W  with 2a  
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Figure 6. Variation of W  with bl al  
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