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SUMMARY: 

Ground rotations may derive from strong, near field seismic effects, in form of special, hypothetical rotational 

waves or wave reflections/refractions at a site (see e.g., special issue of BSSA – Lee et al., 2009). Recent 

developments in seismological instrumentation gave the rotational seismology a status of an emerging science. 

However until clear, strong motion rotational records are acquired in the epicentral areas of major earthquakes, 

the rotational seismic engineering will still be in its infancy. So far then, the rotational effects are analyzed 

indirectly from translational measurements. One of such the methods is presented in this paper, where the 

rotational ground motions (torsion about vertical axis and  rocking about horizontal axis) are formulated from the 

wave decompositions of translational ground motions. Respective formulae for the torsional and rocking power 

spectral densities are formulated in terms of translational acceleration of seismic components. A brief 

parametric, numerical analysis is included. 
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1. INTRODUCTION 

 

The surface seismic rotations, can be an effect of direct surface or gravity wave propagation, 

hypothetical rotational waves appearing in the near field of strong earthquakes (Teisseyre et al, 2007) 

or they may appear as an effect of upcoming body waves (Trifunac, 1982). The purpose of this paper 

is to present, in a concise way, the derivations leading to rocking ground motion (about horizontal 

axis) and torsional motion (about vertical axis) in terms of three, translational ground motions and 

respective wave propagation parameters (angles and velocities of propagation) formulated in form of a 

representation of a stochastic field of the ground motions.  

 

 

2. FORMULATION OF THE PROBLEM 

 

Consider system of the so called “principal axes” on the ground surface, in which one of the axes is 

directed towards epicentre and the other one is vertical (see Fig. 1). Penzien and Watabe (1975) have  

 

 
 

Figure 1. System of principal axes at a site and two rotations φ and ψ 



shown that ground motions u(t), v(t) and w(t) appear as uncorrelated. What is more (Zembaty 1997), 

when spatial seismic effects at two distinct surface points A and B are analyzed, the respective 

coherence matrix transforms as a tensor when the system of coordinates is changed. For the system of 

principal axes the problem of wave propagation at building site can be simplified to plane wabe 

propagation. In this case, from body waves reflections one can derive rocking ψ(t) about horizontal y 

axis and torsion φ(t) about z axis. Applying familiar, solid mechanics formulae (see e.g. Castellani & 

Boffi 1989) one can obtain the two rotations as: 
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3. ROCKING (ABOUT HORIZONTAL AXIS) 

 

Consider P waves incident at an angle ΘP to the free surface (Fig. 2a). Each incident P wave generates 

a reflected, down going P wave, under the same angle ΘPP= ΘP and a reflected SV wave at an angle 

ΘPS with the angles and propagation velocities cP (for P waves) and cS (for shear waves - S) fulfilling 

the familiar geometrical optics formula. 

 

Scc SPPSP /)sin(/)sin(  (3.1) 

 

An analogous formula can be written for the incident SV wave: 
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Figure 2. P and SV waves incident on the ground surface at two different angles ΘP & ΘS 

 

Using figures 2a and 2b one can obtain the amplitudes of horizontal (AX) and vertical (AZ) surface 

ground motions in terms of respective amplitudes AP and ASV of the P and SV waves with particular 

circular frequency ω [rad/s]: 
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where coefficients UP, US, WP, WS equal (compare figures 2a and 2b): 
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The coefficients of the free surface reflections PP, PS, SP, SS can be found in the monographs on wave 

propagation (e.g. Aki, Richards, 1980): 
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It is important to note that the SP and SS coefficients are becoming complex when the incidence angle 

becomes critical ΘS=Θcr and instead of being reflected the S wave propagates as a surface wave (Aki, 

Richards, 1980).  

 

Assume now, that the incident P and S waves are random processes with Stieltjes-Fourier 

representations allowing their classic, spectral decompostion. Then, the horizontal acceleration signals 

)(tu , )(tv  and the vertical one )(tw  can be written as: 
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where dashed symbols are random processes in the frequency domain with orthogonal increments: 
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In formula 3.14, v stands either for v itself or u and w as they appear in equations 3.13, )(vS   is the 

power spectral density .of the acceleration of v(t). An analogous formula holds for respective cross 

spectral densities of all the three translation processes e.g. for processes )(tu  and )(tw : 
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where )(wuS   it is respective cross spectral density. Writing the horizontal and vertical accelerations 

along x and z axes (Fig. 2a and 2b) as infinitesimal, harmonic contributions of two stochastic processes 

in the frequency band (ω, ω+dω): 
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leads to following wave contributions from P and SV waves respectively: 
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Substituting the spectral representations (3.16) for u and w  into (3.17) one obtains: 
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where )(ˆ
P

 , )(ˆ
S

  are the random functions with orthogonal increments (eqs. 3.14-3.15), and 

UP, US, WP, WS are the coefficients given by the formulae (3.5-3.8). Solving the system of equations 

(3.18) for the ‘P’ and ‘SV’ waves contributions one obtains the inverse of eqns. 3.18: 
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where D=UPWS-WPUS. The vertical motion can then be presented as a sum of two wave terms 

propagating in the x direction with different velocities as follows: 
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The infinitesimal rocking acceleration equals then: 
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Substituting x=0 and taking into account eq. 3.19 one obtains 
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Introducing new coefficients 

 

)sin(
)sin(1

S
Psp

S

x
SD

WW

c
W  (3.24) 

)sin(
)sin(1

S
PSPsp

S

z
D

UW

SD

UW

c
W  (3.25) 

 

where S=cP/cS and extending the analysis into the whole frequency domain, allows one to formulate 

the rocking acceleration stochastic process in terms of its horizontal and translational components:  
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Taking into account the orthogonality conditions (3.14, 3.15) one obtains the equation for spectral 

density of the rotational process 
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which, in turn, when integrated gives mean square rocking: 
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It can be seen from formulae 3.27-3.28, that the rotational spectral density is a function of the first 

derivatives of the vertical and horizontal accelerations (the ω
2
 multiplier) i.e., the function of the third 

derivative of respective translational displacements because )()( 6
uSSu . Closer examination of 

the final formula (3.27) reveals that the rocking ground motion driven by body wave reflections 

depends on horizontal and vertical ground motions u and w  as well as on the wave propagation 

velocities cS, cP through S=cP/cS and Poisson coefficient ν since S = √(2-2ν)/√(1-2ν).  

 

In Fig. 3 the modulae of both coefficients WX and WZ, which drive the actual translation-rocking 

transition, are shown normalized with respect to cS velocity, as functions of equal incidence angles 

ΘP=ΘS, the same for both waves and for the S ratio equal to 1.73, (ν=0.25). We may observe, that, as 

the incidence angle goes down to zero, the rocking component also goes to zero. With both incidence 

angle increasing, the vertical ground motion component has much larger contribution to overall 

rocking than the horizontal one. For overcritical angles, the horizontal translations are more 

pronounced, however the vertical ones are increased too. 

 



 
 

Figure 3. Plots of modulae of coefficients WX and WZ (normalized with respect to shear wave velocity) 

representing horizontal and vertical ground motion contributions to the rocking component. The |WX| and |WZ| 

are shown for equal incidence angles ΘP = ΘS. 

 

Taking into account that the vertical and horizontal ground motions are uncorrelated, as reasonably 

can be assumed (e.g. Penzien and Watabe, 1975), than equations 3.24-25 and 3.27 can further be 

simplified. 
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As one can see from equations 3.29 and 3.30, the rocking ground motion is inversely proportional to 

the shear wave velocity at the site (the actual spectral density is inversely proportional to the square of 

shear wave velocity). This means that one can expect the rocking ground motion to increase for the 

softer sites. It can also be seen, that the rocking signal should be frequency shifted compare to the both 

translational ones. In figures 4, 5 and 6 the modulae of both coefficients WX and WZ are shown as 

functions of the two, independent, incidence angles ΘP and ΘS.  

 

 
Figure 4. Plot of modulus of coefficient WX (normalized with respect to shear wave velocity) shown as a 

function of two, independent incidence angles ΘP and ΘS.. 

 



The cross-sections of these 3D plots, going diagonally for ΘP=ΘS, display the results analyzed in Fig. 

3. The plot of |WX| shown in Fig. 4 as a 3D plot is rescaled compare to figures 4 and 5 due substantial 

increase of |WX| in the area where the S wave comes at close to critical angle while the P wave comes 

at a very small angle. Besides the |WX| coefficient stays rather small compare to |WZ|. 

 

 
 

Figure 5. Plot of modulus of coefficient WX (normalized with respect to shear wave velocity) shown as a 

function of two, independent incidence angles ΘP and ΘS. and in scale with the |WZ| plot from Fig. 6  

 

 
 

Figure 6. Plot of modulus of coefficient WZ (normalized with respect to shear wave velocity) shown as a 

function of two, independent incidence angles ΘP and ΘS 

 

4. TORSION FROM SH WAVES REFLECTIONS 

 

Consider now an SH wave incident on the free surface at an angle ΘS (Fig. 7). This wave is reflected at 

the same angle ΘS, and the same amplitude is kept for the reflected wave (Aki, Richards, 1980). Thus, 

the amplitudes of the ground motions u(t) and w(t), along axes x and z respectively, are equal to zero, 

while the amplitude of the ground motion v(t) along axis y does not depend on the angle of incidence 

and equals AV=2ASH. From formula (2.2) it is evident that the torsional component (ground rotations 

around vertical axis) will be build by the derivatives of two horizontal motions u(t) and v(t). For plane 

waves and the principal coordinate system from Fig.1, the SH component v(t) along y axis depends 



only on coordinate x, so:  
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Now, assuming that the process )(tv  can be presented in form of the Stieltjes-Fourier representations 

 

 
 

Figure 7. SH wave incident on the ground surface. 

 

(3.13), the acceleration )(tv  in the frequency band (ω, ω+dω)) can be written as a wave, propagating 

along x direction: 
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From this equation, taking into the account orthogonality condition (3.14), one can derive the spectral 

density of the torsional component in an analogous way as it was done for the rocking component: 
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It can be seen from formula (3.33), that the resulting torsional spectrum will be frequency shifted in a 

similar way like the rocking component (ω
2
 factor). In Fig. 8 the coefficient sin

2
(ΘS)/(2cS)

2
 from 

equation (3.33) is plotted vs. angle of incidence of shear waves ΘS. It can be seen from this figure and 

eq. 3.33 that the torsional component increases with increasing angle of incidence θS and that it is 

inversely proportional to the shear wave velocity, which means that it will be more pronounced for 

softer soils, the same way as it was the case of the rocking ground motion. 

 



 
 

Figure 8. Coefficient [sin(ΘS)/2cS]
2
 of equation (3.33) versus angle of incidence ΘS. 

 

5. CONCLUSIONS 

 

A numerical analysis of the effect body waves reflections from the free surface, on the respective 

torsional (rotation about vertical axis) and rocking ground motion (rotation about horizontal axis) was 

presented. The rocking from the P and SV waves reflections was obtained as a function of the 

horizontal and vertical translational components, while the torsional ground motion was obtained from 

SH wave reflection data and the horizontal component of ground motion. Respective engineering 

formulas were derived (3.30 and 3.33). The ω
2
 coefficient, present in both formulae, results in a phase 

shift of the rocking and torsional power spectral densities, compare to the translational ones. This 

means that the rocking and torsional accelerations are functions of the third time derivative of 

translational displacements. Both rocking and torsional ground motions are inversely proportional to 

shear wave velocity at the site, thus they will be more pronounced for compliant sites than for the hard 

ones. If P and S waves propagate vertically, they neither produce surface torsion nor rocking. The 

rocking component increases as the angles of incidence of both waves uniformly increase while the 

torsional component increases with increasing angle of incidence of shear waves. However it is the 

vertical ground motion component which dominates in the resulting rocking ground motion. It should 

finally be noted, that the actual torsion and rocking ground motions will depend not only on the body 

waves reflections but also on the surface, Love and Rayleigh wave contributions. However prediction 

of the actual contribution of surface waves in the overall ground motion at a particular site is not 

unique and constitutes one of the difficult questions of engineering seismology. 
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