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SUMMARY:  

The aim of this paper is to study the opportunity of optimal damper placement in existing structures, in order to 

minimize the displacement response, for specific seismic conditions in Romania.  The optimal behavior will be 

determined using the dynamic equation of motion, written in the frequency domain. The purpose of the 

optimization process is to minimize the sum of the transfer functions of interstorey displacements for the 

fundamental period of the structure. Using the sensitivities of the transfer function, the optimal position of the 

viscous dampers will be evaluated for a structural configuration and increased in an iterative process. A case 

study for an existing structure will be examined for seismic and soil conditions in Romania. The method will be 

applied to an existing frame structure, modeled using finite elements and the optimal damper placement will be 

determined. In the last part of the paper the behavior of the existing structures and the optimal damped ones will 

be compared to assess improvement. 
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1. INTRODUCTION 

 

The current seismic design theory supposes, for a structure, three different levels of performance. The 

structure needs to behave differently for different earthquake intensities. For a minor earthquake the 

structure must not sustain damage, while in the event of a moderate earthquake some localized damage 

is permitted. In the event of a severe earthquake the buildings can sustain considerable damage but 

cannot collapse. This principle requires buildings to be repaired after each moderate or severe 

earthquake. A modern approach to rehabilitation is to dissipate an important part of the seismic motion 

through the aid of passive devices.  

The viscous damper is a passive device which has been shown to significantly improve the response of 

a structure during an earthquake. The use of viscous dampers for structures has prompted introduction 

in codes such as FEMA356 (2000). It has been proven that the introduction of viscous dampers 

improves the seismic behavior of structures. 

While there are some studies on the effect of passive damping in the structure, their optimal placement 

is not as well researched. Most studies on the optimal distribution use iterative nonlinear trial and error 

analyses to obtain an optimal distribution. In their study, Martinez and Romero (2003) distribute the 

highest damping capacity to the stories with the maximum relative velocity. This parameter is highly 

dependent on the seismic action considered. A more theoretical approach has been studied extensively 

by Takewaki (2009) using optimal design theory. This theory will be also used in this study as it 

provides an optimal distribution of dampers, considering also the soil structure interaction.  

The study aims to address optimal damper placement for particular seismic conditions of pulse like, 

long period earthquakes produced by the Vrancea source. Currently, design codes in Romania will be 

rewritten to increase the level of seismic hazard from 100 years to a more suitable mean return period 



of 475 years. It is argued that for these types of earthquakes viscous dampers are not as well suited, 

introducing considerable forces to the adjacent members. Moreover, the paper will study the effect of 

different soil conditions in Bucharest on the optimal distribution.  

The main objectives of the study are as follows: 

1. Test the Optimal Damper Placement developed by Takewaki (2009), and extrapolate the results to 

nonlinear behavior of structures. 

2. Determine the opportunity of using viscous dampers for the rehabilitation of structures under the 

particularities of Vrancea earthquakes and new design provisions. 

3. Study the effect of soil structure interaction on the optimal distribution of the dampers for different 

sites in Bucharest. 

2. VISCOUS DAMPERS 

Viscous dampers are passive dissipation devices. Viscous dampers have been used in both new and 

existing projects. The viscous damper is built like a piston with two chambers, one of which is filled 

with viscous fluid. As the piston moves the viscous liquid is forced through an orifice generating a 

resisting force. The force developed in the damper Fv is: 

 ( )vF sign v Cv                 (2.1) 

where v is the relative speed between the ends of the damper, C is the damper constant and α is a 

power exponent of relative speed, between 0.3-1.5. The article will refer to linear viscous 

dampers for which α=1. 

3. NUMERICAL PROCEDURES 

The study aims to present and apply an optimal damper placement strategy and test it to the specific 

pulse like, Vrancea earthquake. The dynamic analysis of the structure is computed without dampers. 

The code requirements are assessed using the performance levels expressed in FEMA 356 (2000). 

Two sets of constraints are imposed on the viscous dampers. Firstly, the sum of all the damping 

coefficients (Ctot) will be fixed. Secondly, for economic and technical reasons a limit value is imposed 

on the damping constant, C≤Clim. From the full finite element model of the structure a shear building 

model is constructed, in order to simplify the amount of calculation in the optimization process. Once 

the optimal distribution is obtained, the model with the optimal damper distribution and a model with 

a uniform damper distribution is subjected to an incremental dynamic analysis (IDA). For the IDA, 4 

accelerograms are used, the recorded principal component of the March 4th 1977 earthquake (recorded 

at INCERC) and 3 generated accelerograms obtained using Vanmarke(1967) method. Each of the 

accelerograms PGA is scaled using 4 levels (Sf={0.6,1,1.5,2}). Lastly, all of these analyses are carried 

out for two considered soil profiles and for the building without the considered soil layers. For each of 

the cases a nonlinear dynamic analysis is run. A total of 3 damper distributions (no dampers, uniform 

damper distribution, optimal damper distribution) are tested against 4 accelerograms, each with 4 

scaling coefficients, resulting in 144 nonlinear dynamic analyses. These are performed using SAP2000 

v14 software. The results of the analyses are compared and the performance levels are assessed for the 

distributions.  

4. THE MODEL 

For the numeric experiments a symmetric concrete structure is used. Only one of the central frames of 

the structure is analyzed. The structure has 6 stories (3 m each) and 4 spans of 6 m (Figure 1(a)). The 

building is an existing building and needs to be rehabilitated. The concrete used in the structure is 

C20/25 and the rebar grade considered is S235. The design loads are comprised of dead loads (5kPa) 

and live loads (2kPa). The inelastic response of the structure is modeled using plastic hinges which 

can form in both ends of each bar element. The plastic hinges are assigned a Takeda type hysteretic 



  
Figure 1 (a)Test Structure; (b) Soil Profile INCERC; (c) Soil Profile TUCB 

behavior. For the beam plastic hinges only a moment curvature relation is considered, while for the 

columns plastic hinges the moment curvature relation is dependent on the axial force. Both moment 

curvature relations are considered bilinear, and are deduced using the average strengths of the 

materials. For the concrete strength and strain, confinement is considered. The acceptance criteria for 

the plastic hinge rotations are extracted from FEMA 356. All of the elements are considered to have 

adequate transverse reinforcement. Also, it is considered that the beam column connection is strong 

enough to avoid shear deformation or yielding. 

The study considers the building supported by 6 layers of soil. The soil is modeled using area elements 

and it is assumed to follow an equivalent linear model similar to Schnabel (1971) Shake model. The 

model and the accuracy have been studied by Takewaki (2002). The stiffness of each soil layer is 

strain dependent, as is its damping (Figure 5). Two soil profiles are used for two sites. The first site is 

the INCERC site, where the above mentioned earthquake has been recorded; the second site 

corresponds to the one at the Technical University of Constructions Bucharest (TUCB). The hatched 

soil layer represents the engineering bedrock (vs=400 m/s), underneath which a linear viscous damper 

(cr=ρ0vsA) has been placed to account for radiant damping (Lysmer and Kuhlemeyer, 1969).  

5. OPTIMAL DAMPER DISTRIBUTION 

In the following chapter, the proposed design method is developed using theory by Takewaki (2009). 

In the first part, some theoretical considerations are presented. In the second part of the chapter the 

logical steps for programing are presented and in the last part of the chapter the accelerograms are 

discussed. 

5.1. Theoretical Considerations 

The problem which needs to be solved is the following. Given a shear building model of a structure, 

its dynamic characteristics and the power spectral density (PSD) of the input accelerogram, find the 

optimal story in which the dampers should be placed, and their characteristics, so that the sum of the 

interstory displacements is minimal. Firstly, the problem needs to be addressed such that the sum of 

the damper coefficients (Ci) is equal to a set value (Ctot). Secondly, each of the damper coefficients 

will be smaller than a certain value (Clim). 
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The method uses optimal design theory, to a linear system. The article aims to apply this algorithm 

and study whether the results can be extrapolated for the nonlinear response of the structure. The 
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problem can be formulated using generalized Lagrange formulation and multipliers (  , , ): 

      
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For the reduced shear building model the equation of motion is written in the frequency domain: 

           2
gK i C M v Mrv      (5.1.5) 

Where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, r is a column vector 

with 1 on every position, v(ω) is the Fourier transform of the displacement vector and v g (ω)   is the 

Fourier transform of the ground acceleration. In order to simplify the statement the following notations 

are made: 

    2A K i C M      (5.1.6) 

The equation of motion is written:             

 ( ) ( )gAv Mrv      (5.1.7) 

The relation between interstorey displacement and displacement is expressed using a transformation 

matrix(T): 
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   1( ) ( )i gd TA Mrv      (5.1.9) 

or writing 1( )Hd TA rM   as the transfer functions for each of the interstorey displacements. 

Using random vibration theory, the mean square response of the interstorey displacement σdi
2 can be 

expressed: 
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In order to find the strain in the soil layers ( 2.5 0.65
id  ) a peak factor is employed (Der Kiureghian, 

1980). To assess the first order sensitivity of the mean square response of the interstory displacement 

to each damper (Cj) the following equation is used: 
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And for the second order sensitivity: 
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After determining the first and second order sensitivities, the algorithm described in the next chapter is 

used to solve the optimal distribution problem. 

5.2. Optimal Distribution Algorithm 

The software MATLAB is used to program an algorithm based on the above theory. It is shown by 

Takewaki (2009) that solving a similar algorithm solves the Lagrange problem. 

Step 1. Initialize all damping constants Cj=0;  

Step 2. Define/Update Dynamic Characteristics (M,K,C) and constraints (Ctot,Clim), PSD function (Pg) 

and number of steps (n); Update strain dependent soil stiffness and damping;  

Step 3. Find “l” damper so that / lD C  is minimum and increase the damping constant of damper “l” 

/lC W n   

Step 4. Update the objective function using a linear approximation  / lD C D C    

and its sensitivity 
2/ /i i lD C D C C     ; 

Step 5. If there is another damper “m” such that / /m lD C D C     , compute the increment 
mC  

Step 6. Update C matrix and continue from step 3 for the remaining number of steps. 

If in step 3 there are multiple dampers “l1..lk” with the same sensitivity, all of their damping 

coefficients are increased using the following relation: 
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5.3. Input Accelerograms 

The most important accelerogram which will be used is the record of March 4th, 1977 Vrancea 

Earthquake (N-S principal component, recorded at INCERC). The mentioned earthquake is the only 

strong motion record, and will be the basis for the optimal design. Using EERA, an EXCEL code of 

SHAKE, and introducing the INCERC soil profile, where the mentioned accelerogram has been 

recorded, the input motion at the engineering bedrock is obtained. In order to account for the 

 

 
Figure 2 PSD of recorded motion, critical excitation                  Figure 3 Generated accelerogram spectrum, target spectrum 
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Table 1 Mean Return Period, Required Performance Levels for Structure 

Mean Reurn Period (years) 50 100 475 975 

Scaling Factor (Sf) 0.6 1 1.5 2 

Required Performance level IO LS LS CP 

Beam Plastic Rotation 0.010 0.02 0.02 0.025 

Column Plastic Rotation 0.005 0.015 0.015 0.020 

 

variability of the input motion, a critical PSD is computed according to Takewaki (2007). It is 

considered that the critical excitation PSD has the same total power as the recorded earthquake, with 

its maximum intensity. The critical PSD is centered on the first angular frequency of the structure. 

Thus, for the proposed critical excitation the response is almost resonant. The peak value of the PSD is 

s=710 cm2/s3 and the total area of the PSD is S=4340 cm2/s4. The critical excitation PSD has a constant 

amplitude of 710 cm2/s3 on a 6.12 rad/s interval centered on the first period of the studied frame 

ω1=5.86 rad/s (T1=1 s) for the INCERC site and ω1=7.38 rad/s (T1=0.85 s) for the TUCB site. There is 

a change in the systems period as the damping capacity increases as the response of the structure 

influences the strain in the soil layers. This variation is taken into account but in this case is not 

significant.  

In order to confirm the results through nonlinear time history analyses, another 3 accelerograms are 

generated using Vanmarke (1976) algorithm. In Figure 2 the spectrum is presented along with the 

spectra of the generated accelerograms. It must be noted that a series of 50 accelerograms were 

generated and only 3 have been chosen, based on similarity with the recorded accelerogram in terms 

of PGA and Arias Intensity. All the accelerograms have a PGA of 0.24g, corresponding to current 

design requirements for the city of Bucharest. The PGA corresponds to a mean return period of 100 

years. The next generation of Romanian codes aims to raise the mean return period of the design 

earthquake to 475 years.  

6. RESULTS OF OPTIMAL DAMPER DISTRIBUTION ALGORITHM 

From the complete finite element model, a reduced shear building model is produced. The 

characteristics of the reduced shear building model are presented in Table 2  

 
Table 2.  Characteristics of the shear building model 

 mi (103kg) k (kN /m) c  (kN s/m) 

Storey 1 111 230367 3128 

Storey 2 111 110856 1505 

Storey 3 111 88911 1207 

Storey 4 122 70183 953 

Storey 5 122 67628 918 

Storey 6 122 59768 811 

 

The mass matrix is determined using the finite element model. The structural damping of the model is 

assumed to be Rayleigh proportional to the story stiffness. The damping matrix results considering a 

5% fraction of critical damping for the first period of the structure.  

The structure is firstly outfitted with a uniform distribution of dampers in order to achieve 25% 

equivalent viscous damping. Knowing the amount of equivalent viscous damping the following 

formula can be used to compute the uniform damper constant (Cunf): 

2

2 2

1

4

4000 /
cos

d i i

i
unf

i ri i

i

m

C kNs m
T m

 

 
 




      

(6.1) 



0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400

D
am

p
in

g
 C

o
ef

fi
ci

en
t 

k
N

s/
m

 

Step Number 

C1

C2

C3

C4

C5

C6

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.00E+00 5.00E-03 1.00E-02

D
am

p
in

g
 

G
/G

m
ax

 

Strain 
Clay G/Gmax Gravel G/Gmax

Clay Damping Gravel Damping

 

 

Where ξd is the equivalent viscous damping introduced by the dampers, mi ϕi ϕri,θ,T1 are the storey 

mass, normalized displacement in the first mode, relative normalized displacement in the first mode, 

the angle between the damper and horizontal, respectively the first period of the structure. In order to 

obtain the optimal distribution of the dampers the following constraints are employed. Firstly, the sum 

of damping coefficients for the whole structure will be equal to the sum in the uniform distribution 

case (Cs=24000kNs/m). A second constraint is imposed on the damping constant of each damper. If 

the value of the damping constant is high the damper produces large forces which make the damper 

more expensive but also introduce significant forces in the adjoining members. Technical aspects need 

to be taken into account also, as manufacturers provide a certain set of dampers. In the case of this 

study the limit on the damping constant considered is (Clim=8000 kNs/m). For these constraints, 

considering the critical PSD, shown in Figure 2, and selecting a number of 400 steps, the following 

damper distributions are obtained.  

In figures 4, 6 and 7 the optimal distribution algorithm is presented for the INCERC site, TUCB site 

and the fixed base model. The optimal damper distribution for the fixed based model uses 3 dampers 

on stories 2, 3 and 4 each with a damping coefficient Clim=8000 kNs/m. When the model takes into 

account the soil structure interaction, the optimal distribution changes. The 4th damper is the first 

which starts increasing in value until its sensitivity decreases to the point where it is similar to the 

sensitivities of the 2nd and 3rd story dampers, point at which all of the dampers increase in value until 

they all reach the limit Clim. Although the soil layers are different, the optimal distributions vary only 

slightly between the two sites. Comparing with the fixed base model, the 4th storey damper is still the 

most useful damper to the structure, and the most important contributions are again made by the  

 

Figure 6 Evolution of Damping Coefficient (INCERC)          Figure 7 Evolution of Damping Coefficient (TUCB) 
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(fixed base model) 
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considered soils 
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4th, 2nd and 3rd storey dampers.  However towards the end of the algorithm the 5th storey damper also 

starts to play a role. In Figures 8 and 9 the variation of the sum of the mean square response of the 

drift is presented for both sites and for the optimal and uniform distribution. It is evident that the 

optimal distribution algorithm provides a better response in terms of the objective function. 

7. RESULTS FOR NONLINEAR ANALYSIS 

The purpose of the nonlinear dynamic analysis is to establish if the use of the viscous dampers can 

enhance the performance objectives for an existing structure. Three models are studied, one with fixed 

base, and two with different soil conditions. For each of the models three distributions are considered 

no dampers, uniform distribution and optimal distribution, also an IDA is carried out for each case. 

In the following figures the maximum interstorey displacement is plotted for the March 4th 1977 

earthquakes. These are also the maximum drifts obtained for all the accelerograms used. The 

beneficial influence of the viscous dampers on interstorey drift is evident, as it decreases from the no 

damper model to the optimal distribution. On average, the decrease between the no damper model and 

the uniform distribution is of 35%, while the difference between the uniform and the optimal 

distributions ranges between 6% for a Sf=0.6 to 20% for the highest Sf. Between the uniform and the 

optimal distribution the difference is more pronounced as the intensity (Sf) of the earthquake increases. 

In figure 8 the results are plotted for the fixed base model. With respect to the generated 

accelerograms the results vary only slightly for the fixed base model (on average drifts vary by 7% 

with respect to the recorded accelerogram), however when the soil structure interaction is considered, 

the results of the generated accelerograms consistently underestimate the results by up to 20% with 

respect to the recorded accelerogram. 

 
  

Figure 11 IDA for March 4th 1977 Earthquake, TUCB 
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Figure 9 Evolution of damping coefficient with step (UTCB) 
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Figure 10 IDA for March 4th 1977 Earthquake, INCERC 
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Figure 12 IDA Maximum Damper Force 

In figure 12 the maximum damper force is plotted for the optimal and uniform distribution algorithm. 

It is evident from the plot that the optimal distribution makes better use of the installed dampers. 

Maximum damper force for the optimal distribution is on average, twice the value of the maximum 

force in the uniform distribution. 

An interesting observation comes from the fact that the models which consider the soil structure 

interaction, although having dampers of similar capacity as the fixed base model, produce damper 

forces twice as large as the model which does not consider soil. This is even more interesting as the 

interstorey displacements are maximal for the fixed base model.  

Another aspect of the nonlinear analysis is to study the opportunity of the use of linear viscous 

dampers in the conditions of pulse like earthquakes. For the studied model the variation in forces in 

the column next to the installed damper is studied. In Figure 14 the axial force envelope is presented 

for the IDA of the TUCB soil site. Because of relatively high damper forces introduced into the 

structure, the column axial force has a very pronounced variation for both damper distributions, with 

the maximum values attained for the optimal distribution. As the PGA Sf increases, the variation is 

also more pronounced as the damper force increases. Thus, it is clear that for Sf of 1.5 and 2 the force 

in the columns starts to produce tension at certain moments. However, if we observe the number of 

plastic hinges shown in Figure 15, it is evident that it decreases. This is due to the fact that although 

the column axial force varies widely for the case with mounted dampers it is not in phase with the 

maximum moment developed in the column. The variation of the moment for the same column is 

negligible for the cases when dampers are mounted.  

In figure 15 the number of plastic hinges is studied for the INCERC site through the IDA. The positive 

effect of the dampers is observed, as both the number of plastic hinges and the performance objective 

for the hinge decrease from the no damper model to the optimal distribution. The presented trends 

maintain for all models, and all the studied accelerograms.   

 

 
Figure 14 IDA Envelope of Axial Force (TUCB)  
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Figure 15 Number of Plastic Hinges for each Sf and 
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8. CONCLUSION 

The seismic performance of a six-storey concrete frame has been analyzed for the particular 

earthquake conditions given by the Vrancea source and for the particular soil conditions in Bucharest. 

A comparative study has been performed to assess the opportunity of using viscous dampers in order 

to rehabilitate existing structures. Also, the method developed by Takewaki (2009) to obtain an 

optimal distribution was tested, and its validity checked for the nonlinear response of the structure. 

The proposed structure was outfitted with two damper distributions, a uniform distribution and an 

optimal distribution. The two configurations were tested using an IDA and the only strong motion 

record from the Vrancea source. Finally, a set of 3 spectrum compatible accelerograms has been 

generated and used for the analysis to confirm the results given by the recorded accelerogram.  

The results show that the linear viscous dampers reduce the relative displacement of the structure in 

event of a pulse like earthquake. The reduction in relative displacement is more pronounced as the 

PGA of the earthquake increases. The differences between the no damper model and the uniform 

distribution range from 20% to 30%. The optimal distribution of the dampers produces a further 

decrease from the uniform distribution of 9%-25% depending on the PGA. The results hold for both 

the soil profiles, with minor differences between them.  

The study concluded that the optimal damper distribution used introduces important forces to the 

adjacent structural elements. Although in this case the effect of introducing dampers was positive, 

reducing displacements and performance levels, the structural detailing needs to thoroughly take into 

account the additional forces introduced to the structure by the viscous dampers.  

The influence of considering soil structure interaction is shown to produce only minor differences with 

respect of the used soil site. Although the used sites, both corresponding to conditions in Bucharest, 

are somewhat different, the nonlinear response shows little difference between the two. Considering 

the current example where an equivalent viscous damping of 25% was used to size the uniform 

distribution, the introduction of the viscous dampers reduces the response of the structure, however it 

is not enough for the structure to accomplish more strict performance objectives which would be 

introduced by the modification of the mean return period. 

The current study shows a sizeable decrease in displacements and plastic hinge performance levels 

when linear viscous dampers are used. Considering specific soil and earthquake conditions it shows 

that the optimal distribution algorithm employed by Takewaki can be used successfully to find an 

optimal distribution, which in this case although uses 2 less dampers than the uniform distribution, 

provides better results.  
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