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SUMMARY: 

The development of theoretical and computational models for interdependent lifeline system performance prediction 

under seismic hazards constitutes one of the emerging fields of research in infrastructure engineering; however, most 

interdependent network vulnerability models still lack the necessary validation and calibration with actual/reported 

data. A few models have attempted to address this gap by integrating post event data, many of which conclude that 

additional refinement would serve to further improve model accuracy. This paper contributes to model refinement by 

presenting a method using ordinary point kriging to estimate the spatial correlations or interdependence strengths of 

networks subjected to earthquakes from restoration data, which is then applied to the 2010 MW 8.8 Chile Earthquake. 

The results are plotted on correlation maps and synthesized into correlation plots. Using kriging surfaces appears to 

produce both intuitive and informative results, thereby providing a feasible method of estimating spatial 

interdependencies for network vulnerability models. 
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1. INTRODUCTION 

As existing infrastructure systems age and expand, network vulnerability to perturbations, such as those 

caused by earthquakes, becomes a growing concern. Recent incidents such as the 2010 MW 8.8 Chile 

earthquake (U.S. Geological Survey 2010), the 2011 MW 6.3 New Zealand earthquake (U.S. Geological 

Survey 2011a), and the 2011 MW 9.0 Japan earthquake (U.S. Geological Survey 2011b), necessitate the 

understanding of network response, interdependence, and resilience to natural hazards. Thus, theoretical 

and computational models strive to capture realistic failure mechanisms and yield results applicable to the 

field. However, most lifeline network vulnerability models still lack the validation and calibration with 

actual/reported data which is required to assess and improve upon their predictive power and practical 

applications for lifeline performance assessment and decision making.  

A few models have attempted to address this gap by integrating post event data and comparing the 

modeled predicted results with reported network response to that event. Bonneau and O’Rourke (2009) 

and Wang (2006) apply and calibrate the Graphical Iterative Response Analysis of Flow Following 

Earthquakes (GIRAFFE), a model that performs hydraulic analysis on water networks subjected to 

seismic damage, to the 1994 Northridge earthquake. Wu and Dueñas-Osorio (2012) calibrate the 

Interdependence Fragility Algorithm (IFA), a seismic damage propagation model proposed by Hernandez-

Fajardo and Dueñas-Osorio (2011), to the 2010 Chile earthquake. However, the authors note that 

additional refinements to network component fragility estimation and interdependence strength 

quantification would serve to improve network vulnerability predictions. 



 

 

 

In fact, a significant contributing factor to multi-network component fragility is the phenomenon of 

correlation between infrastructure system facilities or nodes. Dueñas-Osorio and Kwasinski (2012) 

proposed a time series analysis on the restoration of infrastructure systems to estimate the interdependent 

coupling strength between different networks and advocate the effect of interdependence between systems 

on component fragility. Lee and Kiremidjian (2007) and Rahnamay-Naeini et al. (2011) derive spatial 

correlations as applied to transportation networks and communication networks, respectively. This paper 

contributes to model refinement by presenting a method utilizing ordinary point kriging to estimate the 

spatial correlations of networks subjected to earthquakes from restoration data in the context of the 2010 

Chile earthquake. Kriging surfaces have been implemented in structural applications as seen in Lenda and 

Ligas (2012); however, kriging has not yet been implemented in seismic hazard applications or 

interdependence quantification efforts. This paper demonstrates the potential of kriging surfaces to 

generate spatial correlation estimates for arbitrary points in an infrastructure system, which would 

contribute to more accurate network component fragility and interdependent coupling strength 

estimations. 

The remainder of this paper is structured as follows: Section 2 discusses the correlation and kriging 

concepts applied in this paper for spatial correlation estimation. Section 3 discusses the application of 

these mathematical concepts to derive spatial correlations in the context of the 2010 Chile earthquake. 

Section 4 discusses the results from the methodology presented in this paper as well as new insights and 

limitations. Section 5 discusses the main conclusions from this study and directions for future research.  

2. MATHEMATICAL CONCEPTS IN CORRELATION ANALYSIS 

This section will discuss the theoretical and mathematic concepts involved in the estimation of the spatial 

correlations of the Chilean lifeline networks presented in this paper. This section begins with a description 

of the correlation methods performed on spatial data, followed by a discussion on the ordinary point 

kriging calculations to be implemented into the proposed spatial intra- and inter-dependence quantification 

methodology. 

2.1 Correlation Methods 

The correlation analysis performed in this paper uses the Pearson’s product-moment coefficient as well as 

Kendall’s tau coefficient. Pearson’s coefficient   describes the degree of a linear correlation between two 

sets of data, and is a generally accepted metric for correlation in engineering (Kendall and Gibbons 1990, 

Ang and Tang 2007, Dueñas-Osorio and Kwasinski 2012). Let X and Y denote two datasets each with n 

elements denoted by xi and yi, respectively. The equation for the Pearson’s coefficient is then described by 

Eqn. 2.1 (Ang and Tang 2007).  

  
 

   

               
 
   

    
                (2.1) 

where    and    are sample means of X and Y, respectively, while sX and sY are sample standard deviations 

of X and Y. 

Kendall’s tau coefficient t is a rank correlation method which describes the degree of similarity between 

the ranks of the two sets of data. The primary advantage of using Kendall’s tau coefficient is the capability 

to detect nonlinear correlation, a feature that Pearson’s correlation lacks. Let X and Y denote two datasets 

each with n elements denoted by xi and yi, respectively. Kendall’s tau coefficient is described in Eqns. 2.2 

through 2.4 (Kendall and Gibbons 1990). 
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where    describes the number of elements with a tied rank (elements with equal values) for the jth set of 

tied elements, with X having a total of   of such sets, and vk describes the number of tied elements for the 

kth set of tied elements, with Y having a total of   of such sets. These correlation concepts will be applied 

to the restoration potential, denoted  , of spatially distributed points to derive an estimate of spatial 

correlation between these points, where these points may be regarded as facilities at which lifeline system 

restoration may be measured. In the context of network analysis, spatial correlations of datasets from the 

same network describe the auto-correlation, which may be related to intra-network dependency, while 

spatial correlations of datasets from different networks describe the cross-correlation, which may be 

related to inter-network dependency. Further discussion on the significance of auto-correlation and cross-

correlation values is presented later in the paper. 

2.2 Ordinary Point Kriging 

The critical component in the estimation of spatial correlation in this study is the formation of kriging 

surfaces of   to enable the extraction of interpolated data at particular spatial coordinates for correlation 

analysis. The kriging calculation first requires the formulation of the variogram for the data, which 

describes the spatial variability of  . The variogram formulation begins with the calculation of the 

variogram estimator derived from the raw data, expressed in Eqn. 2.5 (Trauth 2010). 
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where    and      denote the restoration potential evaluated at points zi and zi+h and N(h) describes the 

number of pairs of points within the lag interval h, taken to be the Euclidian distances between the two 

points i and i+h and may be set equal to the mean minimum distance between pairs. A parametric curve is 

then fitted to the variogram estimator to create the variogram model suitable for the data. Once the 

variogram has been determined, the kriging calculations may be performed. 

Ordinary point kriging interpolates the   value at a particular point zP by calculating the weighted average 

of   values evaluated at an N number of neighboring points. This interpolation is expressed in Eqn. 2.6, 

where    is the weighting coefficient associated with the point zi that must be estimated by satisfying the 

constraints expressed in Eqns. 2.7 through 2.8 and minimizing the mean-squared error expressed in Eqn. 

2.9. 
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where     is the true, but unknown value of   evaluated at a particular point zP and          is the 

variogram between the points zi and zj. More information regarding ordinary point kriging may be found 

in MATLAB Recipes for Earth Sciences by Trauth (2010). 

3. ESTIMATING SPATIAL CORRELATIONS WITH KRIGING SURFACES 

This section describes the methodology used to derive the spatial correlations between the Chilean water 

and power networks. This section begins with a description of the available network data from which the 

spatial correlations are derived, followed by a discussion of the meshing process for kriging calculation. 

This section concludes with correlation strategies to develop spatial intra- and inter-dependence 

correlation estimates. 

3.1 Description of Chilean Networks 

The kriging-based spatial correlation strategies pursued by this paper is applied to the electrical power and 

water delivery systems of the Talcahuano-Concepción area of Chile, in the context of the 27 February 

2010 MW 8.8 Offshore Maule earthquake. Available data includes the number of days of repair prior to the 

full restoration of lifeline system service at various locations in this area, termed “evaluation nodes.” 

There are 94 evaluation nodes integrated into the procedure, and the length and width of the area 

containing the data is approximately 20 km and 10 km, respectively. Fig. 3.1 below depicts the locations 

of these evaluation nodes as well as the power grid and water pipelines in this area. 

 

Figure 3.1. Depiction of the evaluation nodes used in this paper. 

From the field-collected data, the number of days required to fully restore the service of lifeline networks 

at the evaluation node is used as a proxy for the restoration potential at each evaluation node,  . The 

maximum and minimum number of days for repair are 61 and 1, respectively, for the power system and 75 

and 3, respectively, for the water system. Factors that may contribute to   diversity include the 

prioritization of the restoration of service to a given area, as well as the degree of damage inflicted on the 

networks that serve that area. The authors also assume that network components (e.g. water pumping 

stations or electrical substations) that service a particular evaluation node are sufficiently physically close 



 

 

 

to the node such that the services experienced by the node are similar to the services experienced by those 

network components so that commentary on network interdependence is feasible. For example, if some 

point i experiences a level of service   from the local electrical substation, the water pumping station 

servicing point i would also experience a level of service   from the same electrical substation.  

Formulation of Spatial Meshes for Kriging Calculation 

Spatial correlation analyses, as described later in this paper require that the kriging surfaces must include 

  values at additional coordinates (X’,Y’), describing various R Euclidian distances from each evaluation 

node at coordinates         with varying   angles from the horizontal. Thus, a mesh of (X’,Y’) coordinates 

is created using distance increments    of 500 meters up to a maximum distance Rmax of 10 km and angle 

increments    of      from the horizontal. Kriging surfaces of   values are derived within this mesh for 

each network. The resulting kriging surfaces are presented as a cloud of points describing the value of   at 

those points, which are depicted in Fig. 3.2. 

 

Figure 3.2. Kriging surfaces of interpolated   values as a cloud of spatial points for the (a) power and (b) water 

networks. 

Spatial Correlation Analysis 

Using the kriging surfaces described above,   values may be extracted from particular points (X’P,Y’P) 

resulting from translating the nodes a particular distance RP at an angle    from the initial evaluation 

nodes at        . This operation is diagramed in Fig. 3.3 below. 



 

 

 

 

Figure 3.3. Diagram depicting an example of (a) evaluation nodes and (b) the operation performed to find   values 

at particular points using RP and   . 

By performing this operation to each evaluation node, a set of extracted   values associated with the 

parameters RP and    may be compared to the   values at the evaluation nodes using correlation analysis. 

If the correlation values are averaged over all    values for each RP, a global (average) spatial correlation 

value may be derived as a function of displacement from an evaluation node.  

Auto-correlation values are obtained from comparing the   values for a network at the evaluation nodes 

with the   values for the same network at some displacement, R, from each evaluation node. A positive 

value of this metric describes the similarity between an arbitrary point and surrounding points, and may be 

interpreted as an assessment of the similarities of the inflicted stresses and resulting damage due to 

proximity, prioritization of repair, or a measure of intranetwork dependency, termed the likelihood of a 

“shared fate.” As the auto-correlation approaches 0, the nodes are considered to be more independent 

(unique) with regards to inflicted damage or repair.  

Cross-correlation values are obtained from comparing   values for a network (the reference network) at 

the evaluation nodes with the   values for a different network (the adjunct network) at some R 

displacement from the evaluation nodes. A positive value of this metric describes the similarities between 

a network at an arbitrary point and a different network at nearby points, which may be interpreted as a 

measure of the coupling strength between interdependent networks. As the cross-correlation approaches 0, 

the coupling strength approaches 0 and the networks are considered relatively independent. 

4. RESULTS AND DISCUSSION 

After appropriate meshing, the formulation of kriging surfaces, and the application of the aforementioned 

auto- and cross-correlation methods, the estimations of global (average) spatial correlations are derived 

and presented in correlation maps as seen in Fig. 4.1 as a function of distance and angle from the 

evaluation nodes. Fig. 4.2 synthesizes these results by averaging the correlations over all angles, resulting 

in the average spatial correlation as a function of Euclidian distance from the evaluation nodes. The error 

bars depict 1 standard deviation from the mean. 



 

 

 

 

Figure 4.1. Spatial correlation maps between an arbitrary point and another point as a function of distance from the 

arbitrary point at the center using (a) Pearson’s coefficient (b) Kendall’s tau coefficient. For both sets of maps: top 

left, auto-correlation for power system; bottom right, auto-correlation for water system; top right, cross-correlation 

with power as reference system and water as adjunct system; bottom left, cross-correlation with water as reference 

system and power as adjunct system. 

 

Figure 4.2. Spatial correlation plots between an arbitrary point and another point as a function of distance from the 

arbitrary point, averaged over all directions, using (a) Pearson’s coefficient and (b) Kendall’s tau coefficient. For 

both sets of plots: top left, auto-correlation for power system; bottom right, auto-correlation for water system; top 

right, cross-correlation with power as reference system and water as adjunct system; bottom left, cross-correlation 

with water as reference system and power as adjunct system. 

In both Fig. 4.1 and Fig. 4.2, the left set of plots (a) depict the correlation results using Pearson’s 

coefficient, and the right set of plots (b) depict the correlation results using Kendall’s tau coefficient. In 



 

 

 

each set of plots, the main diagonal describes the auto-correlation in each network; the top left depicts this 

value for the power network, and the bottom right depicts this value for the water network. The remaining 

plots represent cross-correlation between different networks; the top right depicts this value for the power 

network as the reference network with the water network as the adjunct network, and the bottom left 

depicts this value for water as the reference network and power as the adjunct network. 

Regarding Fig. 4.1, all plots have a very small region in the center that depicts very high correlation, while 

correlation generally decreases as the distance from the center increases. However, it can be observed that 

the correlations are not radially symmetric (anisotropic); points equidistant from the center may vary 

greatly. This variability is reflected in the error bars of Fig. 4.2. Additionally, it appears that correlation 

generally tends to decrease towards the south-southeast and increases north-northwest. This trend may be 

explained through observing the kriging surfaces in Fig. 3.2 from Section 3, which depicts   generally 

increasing going northward—service in the southern portion of the area tends to be restored before the 

northern portion. This implies that there may be a south-to-north repair scheme, or that seismic damage is 

more extensive in the north relative to the south. 

Regarding Fig. 4.2, all plots have positive initial correlation values that decay towards 0 until a distance of 

approximately 1 000 – 1 500 meters, after which the correlation values are relatively stagnant and 

independent of distance. This implies that spatial correlation only plays a significant impact between 

points within 1.5 kilometers of each other, which is intuitive as spatial correlation should weaken as 

distance between points increases. The auto-correlation plots have initial values of 1.0 correlation, as this 

expresses the correlation of identical datasets (same network, same values of   evaulated at the same 

points). The cross-correlation plots have initial values of 0.483 and 0.284 for Pearson’s coefficient and 

Kendall’s tau coefficient, respectively; the   values of the power and water networks have a discernible 

linear correlation and slightly weak rank correlation. With the distance from the evaluation node equal to 

0, this value may be interpreted a measure of the coupling strength between the local power and water 

network components. The authors compare these values with the cross correlation values of 0.35, 0.53, 

0.50, and 0.75 calculated from a time series analysis applied in Dueñas-Osorio and Kwasinski (2012). The 

values calculated in this paper are reasonable in comparison with the results from the time series method; 

thus, the methods utilized in this work appear to be viable.  

Current limitations to the application of ordinary point kriging to spatial correlation estimation include the 

issue regarding the kriging surface evaluated outside the cloud of evaluation nodes. As can be seen in the 

kriging surfaces in Fig. 3.2, the values outside the cloud are fairly constant, being simply extrapolations 

from the evaluation nodes at the edges of the cloud, which may not reflect the true spatial correlation 

found at those points, especially upon observing the intricacy of the central part of the surface where 

evaluation nodes exist. In correlation analysis, any displacement RP results in the inclusion of these 

extrapolated values outside the cloud and introduces a subset of elements that will be falsely correlated 

(due to the consistency of the extrapolations) that is integrated into the global (average) correlation 

associated with RP. At sufficiently large RP, the impact of the extrapolated values will become significant, 

thus implying that the spatial correlation estimation becomes less accurate for larger distances. On the 

other hand, the spatial correlation at large distances is expected to be small and possibly disregarded, 

thereby minimizing this issue. 

Another issue regarding ordinary point kriging is the potential of creating too fine of a mesh for kriging 

surface calculation given the granularity of given data (evaluation nodes). The interpolated   values very 

close to an evaluation node (and very far from neighboring nodes) will be heavily weighted towards the   

values at the evaluation node, thereby creating nearly identical datasets and potentially introducing false 

correlations at sufficiently small RP. While spatial correlation at small distances is expected to be high, 

correlation estimates would only be significant if there is sufficient contribution from neighboring nodes. 

One option is to consider the mean minimum distance between pairs of evaluation nodes (as seen in the 



 

 

 

variogram calculation) when determining a proper    for mesh creation. The mean minimum distance 

between pairs of evaluation nodes in this paper is approximately 1 200 meters. 

5. CONCLUSION 

As shown by the results presented in this paper, the application of ordinary point kriging to spatial 

correlation estimation appears to be feasible. The correlation maps and plots demonstrate that spatial 

correlation is significant for points within a distance of 1.5 kilometers of each other, after which 

correlation stagnates and approaches 0. The correlation maps reveal a trend in restoration in the north-

south directions, which may be verified from observing the kriging surfaces. This suggests a relationship 

between location and restoration scheme or seismic damage distribution. From observing the correlation 

plots, the cross-correlation between the power and water systems at the evaluation nodes yields values of 

0.483 and 0.284 for Pearson’s coefficient and Kendall’s tau coefficient, respectively. These correlation 

values appear reasonable in comparison to cross-correlation values derived in Dueñas-Osorio and 

Kwasinski (2012). 

Possible ventures for future research include the consideration of the state of restoration at varying points 

in time, as found in the work by Dueñas-Osorio and Kwasinski (2011). Such an additional dimension 

would allow for comparisons of the state of restoration in time between two points, resulting in a more 

accurate assessment of the correlation between those two points. This would also allow for the 

formulation of correlation maps particularized for an arbitrary point, thereby enhancing the granularity of 

correlation estimates toward the local level, as current methods only allow for correlation maps averaged 

over all evaluation nodes to describe estimated global spatial correlation.  

The primary objective of the authors is to promote the validation and calibration of theoretical and 

computational models toward reality with reported data from actual seismic events. Refined and realistic 

models enable effective planning, design, maintenance, and retrofit of infrastructure networks; utility 

companies and governments may more precisely identify vulnerable components of an infrastructure 

network and allocate resources accordingly. The methods presented in this paper allow for the integration 

of reported restoration data into hazard estimations through spatial correlations, resulting in a more 

accurate prediction of network vulnerability by interdependence models. 
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