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SUMMARY:  
Structural damage to r.c. buildings located in a near-fault area has been observed during strong ground motions, with 
long-duration horizontal pulses and high values of the ratio between the peak value of the vertical acceleration and 
the analogous value of the horizontal acceleration. The design provisions of current seismic codes are generally not 
very accurate for assessing the structural effects of near-fault ground motions. In this work, the nonlinear seismic 
analysis of six- and twelve-storey r.c. spatial frames, subjected to horizontal (bidirectional) and vertical components 
of near-fault records, is carried out to evaluate the effectiveness of the Italian seismic code. A lumped plasticity 
model based on the Haar-Kàrmàn principle, representing a good compromise between accuracy and computational 
efficiency, is considered to describe the inelastic behaviour of girders and columns.  
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1. INTRODUCTION  
  
Near-fault ground motions, like those recorded at L’Aquila in 2009, have different characteristics from 
those of far-fault ground motions and can induce unexpected structural damage of r.c. buildings. More 
specifically, these motions can exhibit long-duration horizontal pulses generated by a forward-directivity 
effect (Chioccarelli et al., 2010). Moreover, high values of the ratio αPGA between the peak value of the 
vertical acceleration (PGAV) and the analogous value of the horizontal acceleration (PGAH) can also occur 
(Papazoglou et al., 1996). In particular, the pulse-type nature of a (horizontal) near-fault ground motion can 
induce ductility demands at the end sections of both girders and columns, which also depend on the 
direction and position of the structure with respect to the rupture surface (Alavi et al., 2004; Mazza and 
Vulcano, 2010). On the other hand, high values of the acceleration ratio can notably modify the axial load 
in r.c. columns, producing even tension and high compressive forces; moreover, plastic hinges are 
expected along the span of r.c. girders, especially in the upper storeys (Di Sarno et al., 2010). 
The nonlinear dynamic response of medium-to-high rise r.c. framed buildings subjected to horizontal 
(bidirectional) and vertical components of near-fault ground motions is studied in the present work in order 
to evaluate the effectiveness of the Italian seismic code (Technical Regulations for Constructions, NTC08). 
To reduce the computational effort, a lumped plasticity model based on the Haar-Kàrmàn principle is 
considered to model the inelastic behaviour of the r.c. frame members (Mazza et al., 2010): for a column, a 
piecewise linearization of the bounding surface of the axial load-biaxial bending moment elastic domain is 
considered at the end sections, where inelastic deformations are expected; for a girder, the elastic-plastic 
solution is evaluated only at the end sections but the potential plastic hinges along the span, due to the 
vertical ground motion, are also checked. 
     
  
2. LUMPED PLASTICITY MODELING OF A R.C. COLUMN 
  
Many nonlinear modeling strategies for r.c. columns subjected to biaxial bending and axial force are 
available in literature (Rodrigues et al., 2011). For this type of element, a good simulation of the response 
can be obtained by a piecewise linearization of the bounding surface of the axial load-biaxial bending 
moment elastic domain, at the end sections where inelastic deformations are expected (Mazza et al., 2011). 
Each flat surface corresponds to a plastic strain mechanism for the cross-section (Figure 1), defined by the 

 

 



axial strain εP, along the longitudinal axis x, and by the curvatures χPy and χPz, along the principal axes y 
and z, referring to the (geometric) centroid of the section. These strains and the corresponding generalized 
stresses are collected in the vectors 

T
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Denoting by σPk the plastic stresses related to εPk=nk, the elastic domain g(σ)=0 can be approximated by nfs 
flat surfaces gk(σ), each defined by a different (normal) direction nk. In the proposed model, the axial load-
biaxial bending moment bounding surface of the elastic domain is discretized by: 6 surfaces normal to the 
principal axes x, y and z (e.g. Figure 1a); 12 surfaces normal to the bisections of the y-z, x-y and x-z 
principal planes (e.g. Figure 1b); 8 surfaces normal to the bisections of the octants (e.g. Figure 1c). The 
piecewise linearized elastic domain is characterized by the corresponding 26 columns of the matrix 
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where each column represents a vector nk which is defined starting from  
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with the plastic generalized stresses defined as 

P3 P4 P5 P6P1 P2

P1 P2 P3 Py3 P4 Py4 P5 P6

Pz5 Pz6

P7 P8 P9

P7 Py7 P8 Py8 P9 Py9

Pz7 Pz8 Pz9

N N N NN N
= 0  , = 0 , = M , = M , = 0 , = 0

0 0 M M0 0

N N N
= M  , = M , = M

M M M

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

σ σ σ σ σ σ

σ σ σ
P10

P10 Py10

Pz10

N
, = M

M

⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

σ

 (2.4) 

 

 
(a) (b) (c) 

Figure 1. Flat surfaces approximating the elastic domain for the end sections of a r.c. column. 
 
The components of the generalized plastic stress vector σPk can be evaluated by the equilibrium equations: 

b b b

c c c

n n n

Pk c si si Pyk c si si i Pzk c si si i
i=1 i=1 i=1A A A

N = σ dA  + A σ ,  M = σ z dA   A σ z , M = σ y dA  + A σ y− −∑ ∑ ∑∫ ∫ ∫        (2.5) 

where elastic-perfectly plastic constitutive laws are assumed for both concrete (σc−εc) and steel (σs−εs), 
assuming a positive sign for tensile stresses and strains. In Eqn. 2.5, nb is the number of longitudinal bars 
while (yi, zi) and Asi define, respectively, the position and area of each bar. In particular, once the plastic 
strain mechanism of the cross-section corresponding to the vector nk (k=1..nfs) is considered, the maximum 
compressive strain in concrete (εcmax) and the maximum tensile strain in longitudinal steel reinforcement 
(εsmax) are evaluated, avoiding values greater than the corresponding ultimate ones  (e.g. εcu=0.35%  and 
εsu=1%), so obtaining the position of the neutral axis and the compressed concrete area (Ac).  
At each step of the analysis, the elastic-plastic behaviour, once the initial state and the incremental load are 
known, can be obtained by using the Haar-Kàrmàn principle. It states that, among all the generalized stress 



fields σ satisfying equilibrium, the elastic-plastic solution σEP is that with the minimum distance, in terms 
of complementary energy Πc, from the elastic solution σE (Mazza et al., 2010) 
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ξ(=x/L) being a nondimensional abscissa, L the length of the beam element and Dc the elastic matrix of a 
column. The plastic admissibility conditions 

( )   for k EP fsg 0 k=1..n≤σ  (2.7) 
also have to be satisfied at the end sections of the beam element. More specifically, the first step of the 
return-mapping algorithm consists of the identification of the octant of the elastic domain (N-My-Mz) where 
the elastic solution σE, represented by the point E, lies (Figure 2). Afterwards, the elastic-plastic solution 
σEP represented by the point P is obtained by the closest-point projection method, referring to the active 
flat surface of the elastic domain and checking that the point P lies inside it (Figure 2a). Otherwise, the 
point P can be located along the active line (Figure 2b) or at the active corner (Figure 2c) resulting from 
the intersection of two or more flat surfaces, respectively. 
 

 
(a) (b) (c) 

Figure 2. Return mapping on the flat surfaces approximating the elastic domain of a r.c. column. 
  
  
3. LUMPED PLASTICITY MODELING OF A R.C. GIRDER  
  
The lumped plasticity model adopted for r.c. girders (Mazza et al., 2011) evaluates the elastic-plastic 
solution only at the end sections (i and j) in the vertical plane of bending (i.e. x-z plane). Potential inelastic 
deformations lumped at ns intermediate sections along the span, due to the vertical ground motion, are also 
checked. In order to avoid the computational effort due to the sub-discretization of the frame member, the 
elastic solution at the end section i (j) is modified taking into account the possible inelastic effects 
occurring at an intermediate section s (s=1..ns), besides those at the end section j (i). Specifically, when a 
plastic (flexural) distortion 
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resulting from an elastic-plastic moment MEPys greater than the corresponding plastic moment occurs at an 
intermediate section of abscissa xs (Figure 3a), the corresponding moments at the end sections are 
evaluated as 
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p being the hardening ratio of the M-χ law. Collecting the generalized stresses in the vector 
T

yi yj= M ,M⎡ ⎤⎣ ⎦σ  (3.3) 

the elastic-plastic solution satisfying equilibrium is obtained, according to the Haar-Kàrmàn principle, 
minimizing the complementary energy 
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where Dg is the elastic matrix of a girder; the plastic admissibility condition 



( )EPg 0≤σ  (3.5) 
also has to be satisfied at the end sections of the girder. Specifically, the (uniaxial) top (T) and bottom (B) 
plastic moments at the end sections 
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are modified during the nonlinear analysis, assuming the following values when a plastic distortion occurs 
at an intermediate section (see Figure 3b) 
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The elastic-plastic solution of the problem defined by the Eqns. 3.4 and 3.5 can be obtained by a predictor-
corrector procedure. It is triggered evaluating the elastic-plastic solution at an end section (e.g. end section 
i) by the formula: 

( )( )sn(0) (s)
EPyi Pyi,T Pyi,B Eyi EPyis=1

M = max M ,min M ,M + ΔM− ∑  (3.8) 

Afterwards the elastic-plastic solution is alternately evaluated at the end sections i (j) and j (i)  
s

s

n (s) (k-1)
n Eyi EPyj EPyi(k) (s) s=1

EPyj Pyj,B Pyj,T Eyj EPyjs=1

M ΔM M
M = max M ,min M ,M + ΔM   

2
−

− −
⎛ ⎞⎛ ⎞+
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑  (3.9) 

(s) (k)
Eyj EPyi EPyj(k+1) (s) s=1

EPyi Pyi,T Pyi,B Eyi EPyis=1

M + ΔM M
M = max M ,min M ,M + ΔM   

2
−

− −
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑
s

s

n
n

  (3.10) 

It is worth noting that, when inelastic deformations occur at an intermediate section, Eqns. 3.9 and 3.10 
need to be solved iteratively until, in this section, at the iteration loop k the difference between the plastic 
moment and the elastic-plastic moment evaluated by the equilibrium, starting from the elastic-plastic 
solution at the end sections, becomes less than a prefixed tolerance. 
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Figure 3. Haar-Kàrmàn solution for a r.c. girder. 
  
  
4. TEST STRUCTURES AND NEAR-FAULT GROUND MOTIONS 
  
Typical six- and twelve-storey medium-to-high rise residential buildings, with r.c. framed structure (Figure 
4), are considered as a reference for the numerical investigation. Deep girders are placed along the 
perimeter of the building together with infilled walls assumed as non-structural elements regularly 
distributed in elevation; deep and flat girders, perpendicular and parallel to the floor slab direction, 
respectively, are assumed inside the building (Figure 4a). Test structures have been designed according to 
the Italian seismic code (NTC08) assuming, besides the gravity loads, the horizontal seismic loads acting 
in combination with the vertical ones. Four cases are examined, identifying each building (B) by two 
symbols: the first one (6 or 12) denotes the number of storeys, the second one (LD or HD) refers to low or 

 



high ductility class.  Moreover, the following assumptions have been made: medium subsoil (class B, 
subsoil parameters: SSH=1.13 in the horizontal direction and SSV=1 in the vertical one); flat terrain (class 
T1, topographic parameter: ST=1); high-risk seismic region (peak ground acceleration in the horizontal, 
PGAH, and vertical, PGAV, directions equal to 0.312g and 0.276g, respectively). The criteria imposed by 
NTC08 for the regularity in elevation are not always satisfied. As a consequence, the following values of 
the behaviour factor are considered: qH=3.12 and qH=4.68, for the horizontal seismic loads, considering 
low or high ductility class, respectively; qV=1.5, for the vertical seismic loads. Dead- and live-loads used in 
the design are equal respectively to: 4.8 kN/m2 and 2 kN/m2, for the top floor; 5.7 kN/m2 and 2 kN/m2, for 
the other floors. Masonry-infill weight is taken into account considering a gravity load of 2.7 kN/m2. A 
cylindrical compressive strength of 25 N/mm2 for the concrete and a yield strength of 450 N/mm2 for the 
steel are assumed. The sizes of the sections for girders and columns are shown in Table 1a, for B6LD and 
B6HD structures, and in Table 1b, for B12LD and B12HD structures. The dynamic properties of the tests 
structures are also reported in Table 2: more specifically, the vibration periods corresponding to the three 
high-participation modes with prevailing components in the horizontal (T1X and T1Y) or vertical (T1Z) 
direction, and the corresponding effective modal masses in the horizontal (m1X and m1Y) or vertical (m1Z) 
direction expressed as a percentage of the total mass (mt) of the test structures. 
In order to study the effects of near-fault ground motions on the nonlinear dynamic response of the test 
structures, Imperial Valley (El Centro Differential Array station, 1979) and Northridge (Newhall West Pico 
Canyon station, 1994) ground motions, available in the Next Generation Attenuation database (NGA, 
2008) of the Pacific Earthquake Engineering Research center, have been considered.  The main 
corresponding data are reported in Table 3: peak ground acceleration for the two horizontal components 
(PGAH1 and PGAH2) and the vertical one (PGAV), acceleration ratios (αPGA,H1 and αPGA,H2). It is worth 
noting that the acceleration ratio has a maximum value of 2.009 for the Imperial Valley ground motion as 
opposed to the value of 1.13 prescribed by NTC08 in the examined case, while the Northridge ground 
motion shows a velocity pulse with a period equal to 2.4 s in the fault-normal horizontal direction (Baker, 
2009). The elastic (normalized) response spectra of acceleration in the horizontal (SaH,1 and SaH,2) and 
vertical (SaV) directions are plotted in Figure 5 for the Imperial Valley ground motion, assuming  an 
equivalent viscous damping ratio in the horizontal direction, ξH, equal to 5% (Figure 5a), and an analogous 
ratio in the vertical direction, ξV, equal to 2% (Figure 5b). The response spectra of these motions are 
compared with the corresponding target NTC08 response spectra for a high-risk seismic region and a 
medium subsoil class. It is interesting to note that in the vertical direction the spectral values of the 
Imperial Valley ground motion are much greater than those corresponding to NTC08 (Figure 5b), at least 
for rather low values of the vibration periods (i.e. TV<0.2 s), which are more relevant for the test structures.  
  
 
 
 
 
 

 
 

 
 

(a) Plan. 
 

(b) Elevation. 
Figure 4. Six- and twelve-storey r.c. spatial frames (dimensions in cm). 



Finally, curves analogous to those shown above are represented in Figure 6, where the elastic (normalized) 
response spectra of acceleration in the fault-normal (FN) and fault-parallel (FP) horizontal directions are 
plotted for the Northridge ground motion. Following recent seismological studies (Baker, 2007), which 
allow the extraction of the largest (horizontal) pulse from a near-fault ground motion, two curves are 
plotted for each direction. As can be observed, in the range of rather long vibration periods (i.e. TH≥1.2 s), 
corresponding to the B12LD and B12HD structures which will be examined successively, the spectral 
values for the extracted pulse (i.e. representing a near-fault motion) are greater than those corresponding to 
NTC08 and residual motion (i.e. representing a far-fault motion) especially in the FN direction (Figure 6a). 
 
Table 1a. Section dimensions (in cm) of the frame members: B6LD (in brackets) and B6HD structures. 

Storey Deep girders Flat girders Corner columns Lateral columns Central columns 
6, 5 30×50 (30×50) 50×25 (50×25) 30×40 (30×50) 30×50 (30×50) 40×40 (40×40) 
4, 3 30×60 (30×60) 60×25 (60×25) 30×50 (30×60) 30×60 (40×60) 50×50 (50×50) 
2, 1 40×60 (40×60) 70×25 (70×25) 40×60 (40×70) 40×70 (50×80) 60×60 (60×60) 

 

Table 1b. Section dimensions (in cm) of the frame members: B12LD (in brackets) and B12HD structures. 
Storey Deep girders Flat girders Corner columns Lateral columns Central columns 
12 30×50 (30×50) 50×25 (50×25) 30×30 (30×30)  30×40 (30×40) 40×40 (40×40) 
11 30×50 (30×50) 50×25 (50×25) 30×30 (30×30) 30×40 (30×40) 40×40 (40×40) 
10 30×50 (30×50) 60×25 (60×25) 30×40 (30×40) 30×50 (30×50) 50×50 (40×40) 
9 30×60 (30×60) 60×25 (60×25) 30×40 (30×40) 30×50 (30×50) 50×50 (40×40) 
8 30×60 (30×60) 70×25 (70×25) 30×40 (35×40) 30×60 (35×60) 50×50 (50×50) 
7 30×60 (30×60) 70×25 (70×25) 30×40 (35×40) 30×60 (35×60) 60×60 (50×50) 
6 40×65 (40×65) 80×25 (80×25) 40×50 (40×50)  40×60 (45×60) 60×60 (60×60) 
5 40×65 (40×65) 80×25 (80×25) 40×50 (40×50) 40×60 (45×60) 60×60 (60×60) 
4 40×65 (40×65) 90×25 (90×25) 40×60 (50×60) 40×70 (50×70) 70×70 (70×70) 
3 40×70 (40×70) 90×25 (90×25) 40×60 (50×60) 40×70 (50×70) 70×70 (70×70) 
2 40×70 (40×70) 100×25 (100×25) 50×70 (50×70) 50×90 (50×90) 80×80 (80×80) 
1 40×70 (40×70) 100×25 (100×25) 50×70 (50×70) 50×90 (50×90) 80×80 (80×80) 

 

Table 2. Dynamic properties of the test structures. 
Structure T1X (s) T1Y (s) T1Z (s) m1X (% mt) m1Y (% mt) m1Z (% mt) 
B6LD 0.576 0.698 0.064 82.3 80.7 38.5 
B6HD 0.623 0.757 0.065 84.9 83.3 50.8 
B12LD 0.993 1.249 0.103 69.5 70.0 64.7 
B12HD 1.000 1.272 0.103 70.6 70.3 75.6 

 

Table 3. Main data of the selected near-fault ground motions. 
Earthquake Station PGAH1 PGAH2 PGAV αPGA,H1 αPGA,H2 

Imperial Valley, 15/10/1979 El Centro D.A. 0.352g 0.480g 0.707g 2.009 1.473 
Northridge, 17/1/1994 Newhall W.P.C. 0.426g 0.279g 0.290g 0.682 1.040 
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Figure 5. Acceleration (elastic) response spectra: Imperial Valley near-fault ground motion. 
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Figure 6. Acceleration (elastic) response spectra: Northridge near-fault ground motion. 

  
  
5. NUMERICAL RESULTS 
  
In order to evaluate the effects produced by horizontal and vertical components of near-fault ground 
motions on the nonlinear dynamic response of the medium-to-high rise r.c. framed buildings described in 
the previous section, a numerical investigation is carried out with reference to records of the Imperial 
Valley and Northridge earthquakes. According to the design hypotheses adopted for the test structures, 
accelerograms recorded on medium subsoil are considered, with a PGA value comparable with the one 
prescribed by NTC08, at least for one of the two horizontal directions. A lumped plasticity model based on 
the Haar-Kàrmàn principle is adopted to model the inelastic behaviour of the frame members, considering 
a two-parameter implicit integration scheme and an initial-stress-like iterative procedure (Mazza et al., 
2010). Plastic conditions are checked at the end sections of the columns, which may experience inelastic 
deformations due to the horizontal ground motion, approximating the axial force-biaxial bending moment 
bounding surface of the elastic domain by 26 flat surfaces. On the other hand, the potential plastic hinges 
along the span of the girders, due to the vertical ground motion, are taken into account modifying the 
plastic moments of the end-sections depending on those of the other three selected sections (i.e. the two 
quarter-span sections and the mid-span section shown in Figure 4b) and assuming a bilinear moment-
curvature law with a hardening ratio p=5%. In the Rayleigh hypothesis, the damping matrix is assumed as 
a linear combination of the mass and stiffness matrices, assuming a viscous damping ratio equal to 5% or 
2% with reference to the two vibration periods corresponding to high-participation modes with components 
prevailing in the Y (T1Y) or Z (T1Z) direction, respectively. In this way, an intermediate value of the 
damping ratio is achieved in the range of vibration periods T1Z-T1Y. 
Firstly, in order to highlight the effects of the vertical component of near-fault ground motions, the 
curvature ductility demand of girders and columns, along the height of the six-storey structures, are shown 
in Figure 7. Maximum values are considered, assuming that the vertical component of the Imperial Valley 
ground motion (El Centro D.A. station) acts contemporaneously with the horizontal components applied 
twice (i.e. alternatively along the principal axes X and Y of the building plan). The ductility demand at the 
end sections and quarter-span sections of the deep girders is reported in Figure 7a, for both B6LD and 
B6HD structures. More specifically, the end sections, at the top side, and quarter-span sections, at the 
bottom one, proved to be the more stressed sections, especially at the upper floors where the effects due to 
vertical seismic loads generally prevail over those of the horizontal seismic loads and an amplification of 
the vertical motion is expected. This kind of behaviour can be explained observing that the ductility 
demand at these sections, in contrast to the mid-span ones, already appears under the horizontal 
components of the seismic loads. Moreover, the bottom plastic moments of the quarter-span sections, at the 
upper floors, are less than or equal to those assumed at the mid-span sections. It is worth noting that the 
ductility demand at the end sections of the B6HD structure is greater than that observed for the B6LD one, 
while the opposite trend can be seen in the quarter-span sections of the same girders, especially at the 
upper storeys. This result emphasizes the need to take into account the vertical ground motion in the design 
of the deep girders, for both low and high ductility classes. Additional results, omitted for the sake of 
brevity, showed that flat girders exhibit a ductility demand which is practically independent of the vertical 
ground motion due to their small tributary mass. Curves analogous to those shown above are reported in 



Figure 7b, where the maximum ductility demand in the radial direction is evaluated with reference to the 
columns of the B6LD and B6HD structures. As expected, the ductility demand is acceptable for the B6LD 
structure, with the exception of the top floor where the “strong-columns weak-girders” mechanism is 
waived and the inelastic deformations due to the vertical ground motion are more evident. On the other 
hand, the ductility demand increases for the B6HD structure in spite of the capacity design criterion being 
more restrictive in this case.  
Successively, attention was focused on the axial force attained in the columns, in order to check whether 
failure phenomena occur under the vertical component of near-fault ground motions: i.e. failure under 
compression or tension, due to the attainment of the corresponding ultimate compressive load, Ncu, or 
tensile load, Ntu. For this purpose, the minimum (Nmin) and maximum (Nmax) values attained by the axial 
load (assuming positive to be a compressive load) in the central columns of the B6LD and B6HD 
structures subjected to the Imperial Valley ground motion are plotted, respectively, in Figures 8a and 8b. 
For these columns, having the greatest tributary mass,  the axial-force variation induced a rather high 
compressive force which in many columns was greater than the balanced load, thus producing a reduction 
in both the ultimate bending moment and available ductility, and quite close to the ultimate compressive 
load Ncu, especially at the second and fourth storeys of the B6HD structure (Figure 8b). Moreover, the 
vertical ground motion also produced tensile forces, which in many sections of both the B6LD and B6HD 
structures proved to be very close to the corresponding ultimate tensile force Ntu. 
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Figure 7. Ductility demand for frame members of the six-storey structures subjected to the Imperial Valley motion. 
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Figure 8. Axial forces for columns of the six-storey structures subjected to the Imperial Valley motion. 

 
To evaluate the effects of the horizontal components of near-fault ground motions on the local damage 
undergone by the girders, the ductility demand for the B12LD and B12HD structures subjected to the 
extracted pulse and residual motion of the Northridge ground motion (Newhall W.P.C. station) are reported 
in Figure 9. More specifically, the ductility demand at the end sections is shown in Figures 9a and 9b, 



considering the mean values evaluated with reference to the six-deep and two-flat girders, respectively, at 
each storey. Fault-normal (FN) and fault-parallel (FP) horizontal components of the Northridge motion are 
applied along the axes rotated at α=30° with respect to the principal axes X and Y of the building plan. It is 
worth noting that the ductility demand for the near-fault ground motion (i.e. the extracted pulse) proved to 
be greater than the corresponding values for the far-fault ground motion (i.e. the residual motion), with 
some exceptions only in the upper three storeys. This result can be explained observing the structural 
damage potential due to a  long-duration impulsive motion like that considered (Section 3); in addition, the 
spectral values for the residual motion are smaller than those evaluated for the extracted pulse, in the range 
of vibration periods more significant for the B12LD and B12HD structures (Figure 6). As expected, high 
values of the ductility demand have been obtained for deep and flat girders of the B12HD structure. 
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Figure 9. Ductility demand for girders of the twelve-storey structures subjected to the Northridge motion. 

 

Finally, to quantify the damage level related to the excitation angle (α), a ductility index DI (0 ≤ DI ≤ 1) of 
the B12LD and B12HD structures subjected to the extracted pulse of the Northridge ground motion is 
plotted in Figure 10. DI is evaluated as the ratio between the mean values of the ductility demand for an 
assigned angle α and the angle corresponding to the maximum value (μmax); this latter is referred to the 
B12HD structure, in order to have the same normalization for low and high ductility classes. 
 

(a) Deep girders. (b) Flat girders. (c) Columns. 
Figure 10. Ductility index of the twelve-storey structures subjected to the extracted pulse of the Northridge motion. 



More specifically, the DI values for the end sections of deep girders (μmax=15.2), flat girders (μmax=14.8) 
and columns (μmax=5.7) are plotted in Figures 10a, 10b and 10c, respectively. As can be observed, the 
maximum values of DI occurred at arbitrary fault orientations rather than assuming FN and FP components 
of the Northridge motion applied along the principal axes of the building plan (i.e. orientation angles α=0° 
and α=90°). This kind of behavior proves to be more evident for flat girders (Figure 10b) and columns 
(Figure 10c). Moreover, the DI spatial domain approximately keeps its shape for deep and flat girders of 
the B12LD and B12HD structures; some differences are highlighted for the columns, where the ductility 
demand of the B12LD structure is less than half of that of the B12HD structure. 
  
  
6. CONCLUSIONS 
  
The nonlinear seismic response of six- and twelve storey r.c. spatial frames, representative of medium-to-
high rise buildings designed according to NTC08, is studied for horizontal and vertical components of 
near-fault ground motions. More precisely, test structures are designed for medium subsoil and high-risk 
seismic region, assuming both low and high ductility classes. To describe the inelastic behaviour of the r.c. 
frame members a lumped plasticity model based on the Haar-Kàrmàn principle, representing a satisfactory 
compromise between accuracy and computational efficiency, is considered. The vertical component of 
near-fault ground motions affected the ductility demand at the end-sections and quarter-span sections of 
deep girders, especially at the upper storeys and for both ductility classes, while it was negligible for the 
flat girders having a small tributary mass. Column ductility demand proved to be significant for the high 
ductility class, in spite of the capacity design based on the “strong-columns weak-girders mechanism” 
being more restrictive in this case; a large variation in the axial force occurred for the central columns, 
producing even tension (close to the ultimate tensile force) and high compressive forces. Finally, the pulse-
type nature of the horizontal components of near-fault ground motions affected the ductility demand at the 
end sections of deep and flat girders, especially for high ductility class, and the maximum values of the 
ductility index for the frame members resulted from arbitrary fault orientations with respect to the building 
plan. 
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