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SUMMARY:

The SAC/FEMA probabilistic framework is based ornpianeering closed-form expression to analytically
estimate the value of the risk integral convolvegismic hazard and structural response. Despiieitense
practicality, implementation has been hindereddguced accuracy due to a number of approximatiersled
to achieve a simple form, the most significant beime power-law approximation of the seismic hazamve.
To mitigate this problem, two approaches are herefigred, namely (a) selecting an appropriatelyséia
power-law fit and (b) offering a novel closed-foarpression involving a higher order approximatidthere
blind application of the original format could irlve error in excess of 100% for the predicted maanual
frequency of limit-state exceedance, biased fittieduces it to less than 25% while for the neweadeform it
remains consistently below 10%. Although other sesirof error still remain, the robustness achiemzhs new
avenues of application for this popular format.
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1. INTRODUCTION

The SAC/FEMA project grew out of the destructiorought by the Northridge 1994 earthquake to
improve the performance of steel moment-resisttagé buildings. Its results have been summarized
in a series of documents and guidelines, the medtkmown being FEMA-350/351 (SAC/FEMA
2000a,b). One of the enduring legacies of the vgerkerated by this project is the popularization of
the concept of evaluating the seismic performante structure in terms of the mean annual
frequency (MAF) of limit-state exceedance by Cdrnatl al. (2002). Equally important is the
introduction by the same authors of the only cle®eh solution for estimating the probabilistic
integral and a simple checking format similar te tamiliar LRFD.

The SAC/FEMA MAF format offers a simple expressitmnconvolve the seismic hazard with the
structural response and derive simple estimatéiseofnean annual rate (or the mean return period) of
exceeding any limit-state that can be defined enstinuctural response, including both the effeéts o
epistemic uncertainty and aleatory variability withuser-selected level of confidence. Thanks to the
simplicity of this formulation, it has found wides@ad recognition and it has been used by prominent
researchers as a basis for performance assessfrstniabures, e.g., Lupoi et al. (2002) and Faffar
Dolsek (2012). At its basis, it can also be thoughhave become the core of the highly influential
Pacific Earthquake Engineering Research (PEER)eC@nbbabilistic framework.

Nevertheless, it has also been criticized foratklof accuracy (e.g., Aslani & Miranda 2005, Begdl|

& Dhakal 2008). The main issue is the adequacyhefapproximations used in deriving the closed-
form expression, thus limiting its predictive afyiliThe most important of them is the power lavofit
the seismic hazard curve that is only locally aatrand, when not properly fitted, can introduce
massive errors. Following in the steps of the aagderivation, we aim to rectify this by offerihgo
improvements, namely using the original expressith a biased hazard fit and employing a second-



order hazard fit in the log-log domain to deriveavel closed-form solution.

2. THE SAC/FEMA FORMAT

Estimating the probability of violating a certairerfprmance level or limit-state starts with the
estimation of a site’s seismic hazard. By adoptndg?oisson model for earthquake occurrence,
probabilistic seismic hazard analysis (Cornell 1968ers a representation of site hazard by the
hazard curve functioRi(s) in terms ofs, the adopted seismic intensity measure (IM), v@iumean
annual frequency (MAF) of exceedance. Let tBerC be scalar demand and capacity characteristics
of the structure, respectively. They can be expessther in IM or engineering demand parameter
(EDP) terms to be used to check for violating fhd@tistate LS. Thus, in the absence of uncertainty,
failure is simply checked &< D, or the capacity being less than the demand. ¥ample this could

be cast as the maximum interstory drift demanchefdtructure being more than a limiting value of,
say, 1% (EDP basis), or the first-mode spectraélacation of the ground motion excitation being
higher than 0.4g (IM basis). In the presence ofedainty, the conditional failure probability, also
known as the fragilityP(C < D|s) is used instead. By convolving with the seismazdrd, the mean
annual frequency (MAF) of limit-state exceedanigecan be estimated via any of the following three
integrals (Jalayer 2003):

[dH(9)] 4o +IOOO“D(COTSD|S)H(s)ols. (2.1)

As = J-P(C< D [s)|dH (9)| = jP(C< D |s)|

To avoid the tedious numerical integration, Corretllal. (2002) have shown that a closed-form
solution may be derived by making a series of rai@ssumptions or approximations. First, a local
power law fit for the (mean) seismic hazard cussadopted (see also Kennedy & Short 1994):

H(s) ~ k,s™ = k,exp(k,Ins), (2.2)

wherek, andk; are positive real numbers. If the capa€itand demand of the structure in Eqn. 2.1
are expressed in terms of the IM, then we havéMhbased format. Assuming that the IM-capacity is
lognormally distributed with mediasg, and dispersion (standard deviation of the log ef data)ss,

then the MAF of the limit-state can be approximadsd
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If, instead, the capacit€ in Eqn. 2.1 is represented as an EDP value thanvédxceeded by the
seismic EDP deman® signals violation, further approximations are reskdAccordingly, it is

assumes that the EDP capacity follows a lognornsttiblution with medianéC and dispersiof,. If,
additionally, the EDP demand given the IM is alsgriormal with a constant dispersion/f and a
conditional median demand provided by a power law:

o(s) ~as, (2.4)

wherea, b are positive real numbers, then the closed forpn@apmation of SAC/FEMA becomes

Cnl () exd X (52 4 2
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In cases where instead of estimating the MAF onetisrested in simply checking whether the
structure violates a certain limit-state, a congahimethod is using the Demand-Capacity Factor
Design Format (DCFD). This was introduced by Cdrathl. (2002) for safety checking in a manner
resembling the popular Load and Resistance FaasigD (LRFD) format. Thus, if we wish to verify
whether the structure violates a limit-state cdpsiswith a performance objecti®g (e.g., the typical
10% in 50yrs for Life Safety corresponds tB@a= In(1 - 0.10)/50 = 0.00211) then we need to estim

the median demanép0 and its dispersioff,q that correspond t8,. This entails performing a set of

nonlinear dynamic analyses with several ground enotiecords at intensity leves, = H "(P,),
consistent with the performance objective. Thewewgiour earlier assumptions about the lognormality
of EDP capacity and of the conditional EDP demaiadety can be verified as

N k1 2 N k1 2
0.exp —— > 6., expg — .
c F{ 2b ﬂac Po 2b ﬂaj
An additional exponential factor can be added eortght side of Eqn. 2.6 to offer a choice of tiegt
the effect of epistemic uncertainties at the ddsi@nfidence level.

(2.6)

Summing up, it is obvious that the IM-based formeéeds only one approximation while the EDP-
based formats need an additional two. In both cii$eshe common local hazard fit that createstmos
problems, due to the rapid monotonically decreasityre of the hazard functidt(s). We intend to
offer two complementary ways of handling it thatlwiitigate any accuracy problems.

3. BIASED HAZARD FITTING

Approximating the curved seismic hazard functioralstraight line in log-log space (Fig. 3.1a) can b
a tricky endeavour. Jalayer (2003) proposed lod#liyng Eqn. 2.2 as a tangent at the median IM-
capacity. By construction this will always assureamservative fit due to the concave shape of the
hazard curve (Fig 3.1a). Unfortunately, as the tthzarvature and the capacity dispersion increase,
this approach results in a massive overestimatidgheointegrand (Fig. 3.1b). If we adopt an IM-lzasi
and assume the third form of Egn. 2.1, the MAFgraed is simply the PDF of the IM capacity
(essentially symmetric around the median in log-lagd multiplied by the geometrically decreasing
hazard value. Thus, most of the contribution to M®&F integral (Egn. 2.1) comes from the higher
frequency earthquakes to the left of the mediamcip (Bradley & Dhakal 2008, Eads et al. 2012) as

shown in the high-curvature high-dispersion exangplgig. 3.1b.
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Figure 3.1. The tangent and the biased power law fits anddheesponding MAF integrands for a med&n
capacity of 2g with 0.5 dispersion at the Van Nsigs (T, = 0.7s)



Thus, it makes sense to introduce a biased fitqpf. 2.2, a fact originally recognized by Dolsek and
Fajfar (2008). They suggested performing a linezgression in the region o0f025s ,1255],
consistently reducing the error of the hazardSihce this requires a regression and does notitiade
account the dispersion of capacity, we instead ggemn even simpler solution that we will term the
left-weighted, right-biased fit (pun intended). Téwismic hazard is simply approximated by a secant
line that passes through the med&stapacity but adopts la-slope determined at points 0.5 and 1.5
standard deviations away. Thus, for the IM-basech&b of Eqn. 2.3 we have:

_InH(s,)-InH(s)

k= ins,—Ins (3.1)
kO = H(éc)'éckl ’ (32)
§ =5 expCps) (3.3)

where,c,, = —0.5, —1.5. An example of its efficiency appdarfig. 3.1a where it accurately captures
the MAF integrand in a high-curvature high-dispensisituation. In this case, the exact MAF is
0.0015, with the tangent fit producing an exaggetastimate of 0.0050 and the biased fit a verseclo
approximation of 0.0014.

For application to the EDP-based format of Eqn, thé same idea is used, only now the dispersion
employed is the total dispersion of EDP demandcaapdcity, divided by the slope (in log-log) of the
IM-EDP relationship:

§= (%}b ex;{c, —“'ﬁct:rﬂ;d} . (3.4)

When employing the DCFD format of Eqn. 2.5, anotsleght modification is needed. Now, hazard
fitting has to be performed af,, as this is the intensity where the analyses aropned. Ideally, we
would want such the hazard fit to remain closeht® IM value corresponding to the capacity, as in
Eqgn. 3.4 above. When the difference in these iitiesss substantially in favour of the unfactored
capacity (the opposite guarantees failure), thatpsimute anyway as any reasonable fit will cdiyec
suggest a safe result. When they are close thdligh the accuracy of Eqn. 2.5 becomes criticalitnd
helps to shift the; values closer to zero (i.e. shift the fit closethiie median IM capacity), say by 0.5
standard deviations. Thus,,= 0.0, —1.0 will be used together with the expr@ssi

§ =S exr{c —M] : (3.5)

' b

4. HIGHER ORDER CLOSED FORM SOLUTIONS

While the biased fit is a definite improvement ottee tangent fit of the power law approximation, it
still does not take into account the curvaturehefgeismic hazard function. It is therefore noficlift

to realize that its performance will degrade whaghér curvatures are present. Employing a second-
order polynomial fit in log-space can partially ok this problem. Thus, letting

H(s) ~ k,exp(k,Ins—k,Ins), (4.1)

we shall proceed to derive new closed-form soltioy closely following the path laid out by Cornell
et al. (2002).



4.1. MAF format on IM-basis

Let us first assume that demand and capacity gueessed in an IM-basis. Then, the third form of
Egn. 2.1 can be integrated analytically to become

oo =P @ e 5 P | o 6 (éc)]*’ex;{% a- p)j , (42)
where
1
P 2 3

is a positive real number that varies within (0,1],

The first form of the solution (Egn. 4.2) showsttf@er zero curvaturekg = 0), i.e., for the classic
power law fit of Egn. 2.2p = 0 and the approximation reverts back to the $AMA original of
Eqgn. 2.3. The second form is valid only fgr# 0, which, by the way, is always the case anywbere
a realistic hazard curve.

Introducing the effect of epistemic uncertaintyegually simple. Uncertainty in the hazard curve is
approximately included by using the mean hazardtfan H (s) and uncertainty in capacity is taken

into account by having the dispersion incorporaith kepistemic and aleatory contributions. Hence,
employing the square root sum of squares rule &\G/FEMA to combine dispersions we only need
to replacep with its respective counterpant

. 1
1+ 2k, (B + Bis)

p (4.4)

with Sus being the dispersion due to uncertainty in $aeapacity. This would in turn produce the
mean (regarding epistemic uncertainty) estimatehef MAF. If instead a certain percentile value
reflecting, e.g., the 90% confidence level in th&MMis required, we need to define the associated
dispersion in the MAF due to epistemic uncertaagy

Prs = kiﬂuscm (4.5)

Then, letK, be the standard normal variate correspondingaaésired confidence level. Formally, let
K, =0™(x), whered is the inverse CDF of a standard normal variaBlenjamin & Cornell 1970),
readily available in any probability textbook oreadsheet program. For examg,= 1.28 for a
90% confidence level estimate. It follows that

As= \/B ké_p[ﬁ(éc)]p ex[{% pk12:352c + KxﬂTUS{:J . (4.6)

Fork,= 0, Eqn. 4.6 reverts again back to the SAC/FEMgioal derivation.

When coupled with a biased fit concept, the nevntdrpromises excellent results. Using Egn. 3.3
with ¢;,3=-0.5, —1.5, —3.0 offers a useful set of interpofapoints for Egn. 4.1. Still, the selection
can be quite more flexible than before and stitiquces a very good result. An example appears in
Fig. 4.1a where the second-order power law has bégsifitted over a narrow or a much wider
interval than the one suggested above. While tketfiemselves seem to differ markedly, they both
perform equally well in the region that matters,sagn in Fig. 4.1b. Therein, the MAF integrands



(Egn. 2.1) are nearly identical, easily producingestimates that match the exact value of 0.0015
within 1%.

-3
16 x 10
exact
14b ===2nd order biased fit (wide)
“| |*=+=2nd order biased fit (narrow) o
1.2 %
g5 1
L S 2
s £ osf :
L
< osr
0.4r
10° hazard S i [ i
- = -2nd order biased fit (wide) [} ‘ [ 0.2
- —-=2nd order biased fit (narrow) | : ; [
107 ‘ 0 ‘ ; LS
10" 10° 10" 10 10 10° 10*
Sa(le5%) (@) Sa(Tl’S%) @
(a) hazard curve fits (b) MAF integrands

Figure 4.1. Two biased %' order power law fits, on a narrow or a wide in#nand the corresponding MAF
integrands for a medig®-capacity of 2g with 0.5 dispersion at the Van Nsigs (T; = 0.7S)

4.1. MAF format on EDP-basis
To utilize the second-order fit in an EDP-basednfat;, we let

1 1

. SE——. 4.7
1+ 2k, B2 107 ¢ 1+ 2K, (2 + B2) 11’ 4.7)

q

and define the IM-level corresponding to the medi@P-capacity according to the approximation of
Egn. 2.4 as

s {ijb. (4.8)

Then Eqgn. 2.1 becomes:
hs =g i *[H (Séc)]“’exr{z—izqkf(ﬂé + ¢ﬂ;)j o5 [H (S&)]“’ex;{% (- ¢)} . (49)

Again the first form of the above format turns inbe SAC/FEMA original whetk, = 0, sinceq =p
=1. Introducing epistemic uncertainty again invelvasing the mean hazard curé(s) and the
updated value gp’ for estimating the overall mean value of the MAF:

1
L+ 2K, (B + SR Bl + Ble) D

¢ (4.10)

where fuss and pusc are the demand and capacity dispersions, respbgtidue to the epistemic
uncertainty.

If instead we are interested in a speciifractile value orx-confidence level for the MAF, then we



need to use the standard normal varigte ®™(x). Hence, the corresponding MAF becomes:
o Ky
s =g A (S&)Yex;{ o Kxﬂm} (4.12)
2

The total uncertainty in the MAF is:

Prue = %ﬂuamv where 3, = \/ﬂjbd +ﬂ56t . (4.12)

In all cases, biased fitting is suggested withrpéation points from Eqn. 3.4 fan 3= —-0.5, 1.5,
-3.0.

4.3. DCFD format

If we are interested in simply checking whether #gteucture violates a certain limit-state, the
Demand-Capacity Factor Design (DCFD) format becoooesenient. To derive the improved format
for the seismic hazard fit of Egqn. 4.1, we Agtless than or equal to the performance objed®yed
second order expression is formed whose solutiarbeaconservatively approximated as:

) 6
iex % > ﬂex %
a 2Kk, a 2Kk,

If checking at a certain confidence lex&b is desired, by including the effect of epistemmcertainty
we come up with the following expression:

n 5 Ve
&exp{%J > [ i exp{% + }—KXﬂTU" j] . (4.14)
a 2k, a 2k, K,

While certainly this is not as simple a format laes dne used in FEMA 350/351, it nevertheless has th
potential to deliver superior accuracy. This is&hexe checking via DCFD formats is performed at the
seismic intensity level consistent wily and not at the median IM-capacity. The local reatfr the
original power law fit may introduce severe accyrgmoblems compared to the broad-range
applicability of the second-order fit used in Eqasl3 and 4.14. Thus, these useful expressions can
deliver much for practical applications. For impedvaccuracy, again, shifted bias fitting is sugegst
by using the interpolation points of Eqn. 3.5dgs3;= 0.0, -1.0, —2.5.

nr
(4.13)

5. ILLUSTRATIVE APPLICATION

To showcase the improvements brought by the biided) and the second-order approximation, we

need a level playing field. To avoid any situattbat would favour one over the other, we will adopt

full compliance with all but one of the assumptioagquired by the SAC/FEMA approach. Thus, the

median EDP demand is defined as a power law fumci&,(T,) and it has constant dispersion due to

epistemic and aleatory sources, regardless ofntiemsity. The marked exception from adherence to
theory will be the use of the highly-curved seismézard of the Van Nuys site in Los Angeles CA

that is expected to severely test the proposedajppations. Obviously, the accuracy achieved in all

subsequent analyses may further degrade in remtste situations, wherever the EDP versus IM

relationship does not adhere well to the abovedassumptions.
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Figure5.1. Estimates of limit-state MAFs and correspondirigtiee errors for varying media®-capacities
and a dispersion of 0.5 at the Van Nuys sfie=(2.4s)

For the MAF format, the above setup makes the Isidband the EDP-basis exactly equivalent,
therefore results for the simpler IM-format will Bhown. A typical example of the estimates obtained
by numerical integration and the closed form sohaifor the ¥ order and 2 order hazard fits
appears in Fig. 5.1. For this case, the IM-dispers a constant 0.5 while a continuum of limittssa

IS used, having media®-capacities ranging from 0.15g up to 1.3g. Dueh®rtature of the seismic
hazard (see for example Fig. 3.1), as the medipacily increases, so does the local curvatureef th
hazard curve. Thus, it is not surprising that th&RAVestimates of the®lorder tangent fit widely miss
the exact value (sometimes by several orders ohimatg) for practically any capacity beyond 0.2g
for this severe case. Even for low capacities,dtier observed is more than 20% of the numerical
integration result (Fig. 5.1b). On the other hahe, ' order biased fit achieves errors less than 10%,
except for some areas beyond 1g. Predictablycitaracy degrades as curvature increases. This is in
contrast to the " order fit results that manage an excellent prefictvith less than 2% error
practically regardless of curvature. Further res(ribt shown herein) provide ample evidence that th
improved format rarely displays error in exces8%f unless dispersions higher than 0.8 are used.

For testing the DCFD format we chose two fictiostictures. Building A has a first-mode period of
T, = 0.7s and its median structural EDP responsevﬁslléz 001S!° (Fig. 5.2a). Building B has

T,=2.4s and is characterized b§/= 001S;* (Fig 5.3a). The longer period of the second stmactu

engages a seismic hazard curve with higher loaalatwres, resulting in a more severe test. In both
cases the constant demand and capacity disperaien$y = fs = 0.35. These values could be
attributed either to aleatory randomness only dhlkaeatory and epistemic uncertainty sources, a
choice that has no impact on the (mean MAF basesi)lts. To properly visualize the discriminatory
ability of the DCFD format to tell apart safe fraimsafe situations, we will display the edge of the

safe region in terms of the median demﬁa@l versus the median capaciéy, i.e., as determined by

assuming equality in Eqns. 3.6 and 4.13. To sesvtha basis of comparison, we will also plot the
edge corresponding to the exact resulPpfbeing equal to the numerically estimated MAF. In a
cases, safety checking will be performed at thelle¥ the mean estimates consistent with Egns. 3.6
and 4.13, corresponding to a confidence level sdmesvabove 50%.

Fig. 5.2b shows the boundary of the safety regietwben demand and capacity for building A.
Clearly, the tangent fit is off the mark with ite@ predictably increasing for higher capacities.(
higher hazard curvature). On the other hand, taeeli I and 2° order fits offer a relatively good,
slightly conservative approximation. For examplenedian capacity of 0.050 should be able to resist
an EDP demand of exactly 0.028, but this is estBahats 0.027 by the two improved methods. The
original tangent fit instead would only accept adime demand lower than 0.025, obviously restricting



the estimated structure’s ability to absorb damage. differences in Fig. 5.3b tell a worse story. A
first glance, they may not look particularly exdessbut the slopes can be deceiving. If a median
demand of 0.015 is recorded, then the structureldhia reality have an EDP capacity of 0.038 to
resist it successfully. If this is approximatedabiangent fit DCFD format, then the needed capéity
off the charts, practically infinite. A biased arder fit manages a better approximation at 0.080le

the 2 order fit achieves a much improved estimate oR0l4 general it seems that as the safety
boundary veers further away from the 1:1 demanddiaypratio, fitting accuracy matters more.
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Figure5.2. The DCFD comparison results for Building A, a lowrvature, ‘good caseT(= 0.7s, EDP =
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6. CONCLUSIONS

A concise investigation of possible improvementsthe SAC/FEMA closed form solution has been
presented. Two hazard fitting approaches have Ipgeposed, offering increased accuracy at a
negligible cost. The first is a left-weighted, righased fitting of the *Lorder power-law function. The
second is a biased fitting of & @rder power-law together with a novel closed f@xpression. The
latter is shown to be remarkably efficient, neayoing-out the excessive errors due to the curgatu
of the seismic hazard. The improvement is so ovelmimg that we can emphatically say that
tangentially fitting a power-law function in log&pe should be avoided at all costs.
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