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SUMMARY: 
The SAC/FEMA probabilistic framework is based on a pioneering closed-form expression to analytically 
estimate the value of the risk integral convolving seismic hazard and structural response. Despite its immense 
practicality, implementation has been hindered by reduced accuracy due to a number of approximations needed 
to achieve a simple form, the most significant being the power-law approximation of the seismic hazard curve. 
To mitigate this problem, two approaches are hereby offered, namely (a) selecting an appropriately-biased 
power-law fit and (b) offering a novel closed-form expression involving a higher order approximation. Where 
blind application of the original format could involve error in excess of 100% for the predicted mean annual 
frequency of limit-state exceedance, biased fitting reduces it to less than 25% while for the new closed-form it 
remains consistently below 10%. Although other sources of error still remain, the robustness achieved opens new 
avenues of application for this popular format. 
 
Keywords: seismic performance evaluation, probabilistic methods, SAC/FEMA, closed-form solution, hazard 
 
 
1. INTRODUCTION 
 
The SAC/FEMA project grew out of the destruction wrought by the Northridge 1994 earthquake to 
improve the performance of steel moment-resisting frame buildings. Its results have been summarized 
in a series of documents and guidelines, the most well-known being FEMA-350/351 (SAC/FEMA 
2000a,b). One of the enduring legacies of the work generated by this project is the popularization of 
the concept of evaluating the seismic performance of a structure in terms of the mean annual 
frequency (MAF) of limit-state exceedance by Cornell et al. (2002). Equally important is the 
introduction by the same authors of the only closed-form solution for estimating the probabilistic 
integral and a simple checking format similar to the familiar LRFD. 
 
The SAC/FEMA MAF format offers a simple expression to convolve the seismic hazard with the 
structural response and derive simple estimates of the mean annual rate (or the mean return period) of 
exceeding any limit-state that can be defined on the structural response, including both the effects of 
epistemic uncertainty and aleatory variability with a user-selected level of confidence. Thanks to the 
simplicity of this formulation, it has found widespread recognition and it has been used by prominent 
researchers as a basis for performance assessment of structures, e.g., Lupoi et al. (2002) and Fajfar & 
Dolsek (2012). At its basis, it can also be thought to have become the core of the highly influential 
Pacific Earthquake Engineering Research (PEER) Center probabilistic framework. 
 
Nevertheless, it has also been criticized for its lack of accuracy (e.g., Aslani & Miranda 2005, Bradley 
& Dhakal 2008). The main issue is the adequacy of the approximations used in deriving the closed-
form expression, thus limiting its predictive ability. The most important of them is the power law fit of 
the seismic hazard curve that is only locally accurate and, when not properly fitted, can introduce 
massive errors. Following in the steps of the original derivation, we aim to rectify this by offering two 
improvements, namely using the original expression with a biased hazard fit and employing a second-



order hazard fit in the log-log domain to derive a novel closed-form solution.  
 
 
2. THE SAC/FEMA FORMAT 
 
Estimating the probability of violating a certain performance level or limit-state starts with the 
estimation of a site’s seismic hazard. By adopting a Poisson model for earthquake occurrence, 
probabilistic seismic hazard analysis (Cornell 1968) offers a representation of site hazard by the 
hazard curve function H(s) in terms of s, the adopted seismic intensity measure (IM), versus its mean 
annual frequency (MAF) of exceedance. Let then D, C be scalar demand and capacity characteristics 
of the structure, respectively. They can be expressed either in IM or engineering demand parameter 
(EDP) terms to be used to check for violating the limit-state LS. Thus, in the absence of uncertainty, 
failure is simply checked as C < D, or the capacity being less than the demand. For example this could 
be cast as the maximum interstory drift demand of the structure being more than a limiting value of, 
say, 1% (EDP basis), or the first-mode spectral acceleration of the ground motion excitation being 
higher than 0.4g (IM basis). In the presence of uncertainty, the conditional failure probability, also 
known as the fragility, P(C < D|s) is used instead. By convolving with the seismic hazard, the mean 
annual frequency (MAF) of limit-state exceedance λLS can be estimated via any of the following three 
integrals (Jalayer 2003):  
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To avoid the tedious numerical integration, Cornell et al. (2002) have shown that a closed-form 
solution may be derived by making a series of rational assumptions or approximations. First, a local 
power law fit for the (mean) seismic hazard curve is adopted (see also Kennedy & Short 1994): 
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where k0 and k1 are positive real numbers. If the capacity C and demand D of the structure in Eqn. 2.1 
are expressed in terms of the IM, then we have the IM-based format. Assuming that the IM-capacity is 
lognormally distributed with median cŝ and dispersion (standard deviation of the log of the data) βSc, 
then the MAF of the limit-state can be approximated as: 
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If, instead, the capacity C in Eqn. 2.1 is represented as an EDP value that when exceeded by the 
seismic EDP demand D signals violation, further approximations are needed. Accordingly, it is 

assumes that the EDP capacity follows a lognormal distribution with median cθ̂ and dispersion βθc. If, 
additionally, the EDP demand given the IM is also lognormal with a constant dispersion of βθd and a 
conditional median demand provided by a power law: 
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where a, b are positive real numbers, then the closed form approximation of SAC/FEMA becomes 
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In cases where instead of estimating the MAF one is interested in simply checking whether the 
structure violates a certain limit-state, a convenient method is using the Demand-Capacity Factor 
Design Format (DCFD). This was introduced by Cornell et al. (2002) for safety checking in a manner 
resembling the popular Load and Resistance Factor Design (LRFD) format. Thus, if we wish to verify 
whether the structure violates a limit-state consistent with a performance objective Po (e.g., the typical 
10% in 50yrs for Life Safety corresponds to a Po = ln(1 - 0.10)/50 = 0.00211) then we need to estimate 

the median demand Poθ̂  and its dispersion βθd that correspond to Po. This entails performing a set of 
nonlinear dynamic analyses with several ground motion records at intensity level sPo = H -1(Po), 
consistent with the performance objective. Then, given our earlier assumptions about the lognormality 
of EDP capacity and of the conditional EDP demand, safety can be verified as  
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An additional exponential factor can be added to the right side of Eqn. 2.6 to offer a choice of treating 
the effect of epistemic uncertainties at the desired confidence level.  
 
Summing up, it is obvious that the IM-based format needs only one approximation while the EDP-
based formats need an additional two. In both cases it is the common local hazard fit that creates most 
problems, due to the rapid monotonically decreasing nature of the hazard function H(s). We intend to 
offer two complementary ways of handling it that will mitigate any accuracy problems. 
 
 
3. BIASED HAZARD FITTING 
 
Approximating the curved seismic hazard function by a straight line in log-log space (Fig. 3.1a) can be 
a tricky endeavour. Jalayer (2003) proposed locally fitting Eqn. 2.2 as a tangent at the median IM-
capacity. By construction this will always assure a conservative fit due to the concave shape of the 
hazard curve (Fig 3.1a). Unfortunately, as the hazard curvature and the capacity dispersion increase, 
this approach results in a massive overestimation of the integrand (Fig. 3.1b). If we adopt an IM-basis 
and assume the third form of Eqn. 2.1, the MAF integrand is simply the PDF of the IM capacity 
(essentially symmetric around the median in log-log) and multiplied by the geometrically decreasing 
hazard value. Thus, most of the contribution to the MAF integral (Eqn. 2.1) comes from the higher 
frequency earthquakes to the left of the median capacity (Bradley & Dhakal 2008, Eads et al. 2012) as 
shown in the high-curvature high-dispersion example of Fig. 3.1b. 
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(a) hazard curve fits (b) MAF integrands 

 
Figure 3.1. The tangent and the biased power law fits and the corresponding MAF integrands for a median Sa 

capacity of 2g with 0.5 dispersion at the Van Nuys site (T1 = 0.7s) 



Thus, it makes sense to introduce a biased fit of Eqn. 2.2, a fact originally recognized by Dolsek and 
Fajfar (2008). They suggested performing a linear regression in the region of ]ˆ25.1,ˆ25.0[ cc ss , 
consistently reducing the error of the hazard fit. Since this requires a regression and does not take into 
account the dispersion of capacity, we instead propose an even simpler solution that we will term the 
left-weighted, right-biased fit (pun intended). The seismic hazard is simply approximated by a secant 
line that passes through the median Sa-capacity but adopts a k1-slope determined at points 0.5 and 1.5 
standard deviations away. Thus, for the IM-based format of Eqn. 2.3 we have: 
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where, c1,2 = –0.5, –1.5. An example of its efficiency appears in Fig. 3.1a where it accurately captures 
the MAF integrand in a high-curvature high-dispersion situation. In this case, the exact MAF is 
0.0015, with the tangent fit producing an exaggerated estimate of 0.0050 and the biased fit a very close 
approximation of 0.0014.  
 
For application to the EDP-based format of Eqn. 2.5, the same idea is used, only now the dispersion 
employed is the total dispersion of EDP demand and capacity, divided by the slope (in log-log) of the 
IM-EDP relationship: 
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When employing the DCFD format of Eqn. 2.5, another slight modification is needed. Now, hazard 
fitting has to be performed at spo, as this is the intensity where the analyses are performed. Ideally, we 
would want such the hazard fit to remain close to the IM value corresponding to the capacity, as in 
Eqn. 3.4 above. When the difference in these intensities is substantially in favour of the unfactored 
capacity (the opposite guarantees failure), the point is mute anyway as any reasonable fit will correctly 
suggest a safe result. When they are close though, then the accuracy of Eqn. 2.5 becomes critical and it 
helps to shift the ci values closer to zero (i.e. shift the fit closer to the median IM capacity), say by 0.5 
standard deviations. Thus, c1,2 = 0.0, –1.0 will be used together with the expression 
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4. HIGHER ORDER CLOSED FORM SOLUTIONS 
 
While the biased fit is a definite improvement over the tangent fit of the power law approximation, it 
still does not take into account the curvature of the seismic hazard function. It is therefore not difficult 
to realize that its performance will degrade when higher curvatures are present. Employing a second-
order polynomial fit in log-space can partially resolve this problem. Thus, letting 
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we shall proceed to derive new closed-form solutions by closely following the path laid out by Cornell 
et al. (2002). 
 



4.1. MAF format on IM-basis 
 
Let us first assume that demand and capacity are expressed in an IM-basis. Then, the third form of 
Eqn. 2.1 can be integrated analytically to become 
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where 
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is a positive real number that varies within (0,1],  
 
The first form of the solution (Eqn. 4.2) shows that for zero curvature (k2 = 0), i.e., for the classic 
power law fit of Eqn. 2.2, p = 0 and the approximation reverts back to the SAC/FEMA original of 
Eqn. 2.3. The second form is valid only for k2 ≠ 0, which, by the way, is always the case anywhere on 
a realistic hazard curve.  
 
Introducing the effect of epistemic uncertainty is equally simple. Uncertainty in the hazard curve is 
approximately included by using the mean hazard function )(sH  and uncertainty in capacity is taken 
into account by having the dispersion incorporate both epistemic and aleatory contributions. Hence, 
employing the square root sum of squares rule as in SAC/FEMA to combine dispersions we only need 
to replace p with its respective counterpart p′: 
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with βUSc being the dispersion due to uncertainty in the Sa capacity. This would in turn produce the 
mean (regarding epistemic uncertainty) estimate of the MAF. If instead a certain percentile value 
reflecting, e.g., the 90% confidence level in the MAF is required, we need to define the associated 
dispersion in the MAF due to epistemic uncertainty as: 
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Then, let Kx be the standard normal variate corresponding to the desired confidence level. Formally, let 
Kx =Φ

-1(x), where Φ-1 is the inverse CDF of a standard normal variable (Benjamin & Cornell 1970), 
readily available in any probability textbook or spreadsheet program. For example, Kx = 1.28 for a 
90% confidence level estimate. It follows that  
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For k2 = 0, Eqn. 4.6 reverts again back to the SAC/FEMA original derivation.  
 
When coupled with a biased fit concept, the new format promises excellent results. Using Eqn. 3.3 
with c1,2,3 = –0.5, –1.5, –3.0 offers a useful set of interpolation points for Eqn. 4.1. Still, the selection 
can be quite more flexible than before and still produces a very good result. An example appears in 
Fig. 4.1a where the second-order power law has been bias-fitted over a narrow or a much wider 
interval than the one suggested above. While the fits themselves seem to differ markedly, they both 
perform equally well in the region that matters, as seen in Fig. 4.1b. Therein, the MAF integrands 



(Eqn. 2.1) are nearly identical, easily producing MAF estimates that match the exact value of 0.0015 
within 1%. 
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(a) hazard curve fits (b) MAF integrands 

 
Figure 4.1. Two biased 2nd order power law fits, on a narrow or a wide interval, and the corresponding MAF 

integrands for a median Sa-capacity of 2g with 0.5 dispersion at the Van Nuys site (T1 = 0.7s) 
 
4.1. MAF format on EDP-basis 
 
To utilize the second-order fit in an EDP-based format, we let 
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and define the IM-level corresponding to the median EDP-capacity according to the approximation of 
Eqn. 2.4 as 
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Then Eqn. 2.1 becomes: 
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Again the first form of the above format turns into the SAC/FEMA original when k2 = 0, since q = p 
=1. Introducing epistemic uncertainty again involves using the mean hazard curve )(sH  and the 
updated value of φ′ for estimating the overall mean value of the MAF:  
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where βUθd and βUθc are the demand and capacity dispersions, respectively, due to the epistemic 
uncertainty. 
 
If instead we are interested in a specific x-fractile value or x-confidence level for the MAF, then we 



need to use the standard normal variate Kx = Φ-1(x). Hence, the corresponding MAF becomes: 
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The total uncertainty in the MAF is: 
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In all cases, biased fitting is suggested with interpolation points from Eqn. 3.4 for c1,2,3 = –0.5, –1.5,    
–3.0. 
 
4.3. DCFD format 
 
If we are interested in simply checking whether the structure violates a certain limit-state, the 
Demand-Capacity Factor Design (DCFD) format becomes convenient. To derive the improved format 
for the seismic hazard fit of Eqn. 4.1, we set λLS less than or equal to the performance objective Po. A 
second order expression is formed whose solution can be conservatively approximated as:  
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If checking at a certain confidence level x% is desired, by including the effect of epistemic uncertainty 
we come up with the following expression: 
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While certainly this is not as simple a format as the one used in FEMA 350/351, it nevertheless has the 
potential to deliver superior accuracy. This is because checking via DCFD formats is performed at the 
seismic intensity level consistent with Po and not at the median IM-capacity. The local nature of the 
original power law fit may introduce severe accuracy problems compared to the broad-range 
applicability of the second-order fit used in Eqns. 4.13 and 4.14. Thus, these useful expressions can 
deliver much for practical applications. For improved accuracy, again, shifted bias fitting is suggested 
by using the interpolation points of Eqn. 3.5 for c1,2,3 = 0.0, –1.0, –2.5. 
 
 
5. ILLUSTRATIVE APPLICATION 
 
To showcase the improvements brought by the biased fitting and the second-order approximation, we 
need a level playing field. To avoid any situation that would favour one over the other, we will adopt 
full compliance with all but one of the assumptions required by the SAC/FEMA approach. Thus, the 
median EDP demand is defined as a power law function of Sa(T1) and it has constant dispersion due to 
epistemic and aleatory sources, regardless of the intensity. The marked exception from adherence to 
theory will be the use of the highly-curved seismic hazard of the Van Nuys site in Los Angeles CA 
that is expected to severely test the proposed approximations. Obviously, the accuracy achieved in all 
subsequent analyses may further degrade in real-structure situations, wherever the EDP versus IM 
relationship does not adhere well to the above two assumptions. 
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(a) estimated MAFs (b) MAF relative error 

 
Figure 5.1. Estimates of limit-state MAFs and corresponding relative errors for varying median Sa-capacities 

and a dispersion of 0.5 at the Van Nuys site (T1 = 2.4s) 
 
For the MAF format, the above setup makes the IM-basis and the EDP-basis exactly equivalent, 
therefore results for the simpler IM-format will be shown. A typical example of the estimates obtained 
by numerical integration and the closed form solutions for the 1st order and 2nd order hazard fits 
appears in Fig. 5.1. For this case, the IM-dispersion is a constant 0.5 while a continuum of limit-states 
is used, having median Sa-capacities ranging from 0.15g up to 1.3g. Due to the nature of the seismic 
hazard (see for example Fig. 3.1), as the median capacity increases, so does the local curvature of the 
hazard curve. Thus, it is not surprising that the MAF estimates of the 1st order tangent fit widely miss 
the exact value (sometimes by several orders of magnitude) for practically any capacity beyond 0.2g 
for this severe case. Even for low capacities, the error observed is more than 20% of the numerical 
integration result (Fig. 5.1b). On the other hand, the 1st order biased fit achieves errors less than 10%, 
except for some areas beyond 1g. Predictably, its accuracy degrades as curvature increases. This is in 
contrast to the 2nd order fit results that manage an excellent prediction with less than 2% error 
practically regardless of curvature. Further results (not shown herein) provide ample evidence that the 
improved format rarely displays error in excess of 5% unless dispersions higher than 0.8 are used.  
 
For testing the DCFD format we chose two fictional structures. Building A has a first-mode period of 

T1 = 0.7s and its median structural EDP response follows 0.101.0ˆ
aS=θ  (Fig. 5.2a). Building B has 

T1=2.4s and is characterized by 1.101.0ˆ
aS=θ (Fig 5.3a). The longer period of the second structure 

engages a seismic hazard curve with higher local curvatures, resulting in a more severe test. In both 
cases the constant demand and capacity dispersions are βθd = βθc = 0.35. These values could be 
attributed either to aleatory randomness only or both aleatory and epistemic uncertainty sources, a 
choice that has no impact on the (mean MAF based) results. To properly visualize the discriminatory 
ability of the DCFD format to tell apart safe from unsafe situations, we will display the edge of the 

safe region in terms of the median demand poθ̂  versus the median capacity cθ̂ , i.e., as determined by 

assuming equality in Eqns. 3.6 and 4.13. To serve as the basis of comparison, we will also plot the 
edge corresponding to the exact result of Po being equal to the numerically estimated MAF. In all 
cases, safety checking will be performed at the level of the mean estimates consistent with Eqns. 3.6 
and 4.13, corresponding to a confidence level somewhere above 50%. 
 
Fig. 5.2b shows the boundary of the safety region between demand and capacity for building A. 
Clearly, the tangent fit is off the mark with its error predictably increasing for higher capacities (i.e., 
higher hazard curvature). On the other hand, the biased 1st and 2nd order fits offer a relatively good, 
slightly conservative approximation. For example, a median capacity of 0.050 should be able to resist 
an EDP demand of exactly 0.028, but this is estimated as 0.027 by the two improved methods. The 
original tangent fit instead would only accept a median demand lower than 0.025, obviously restricting 



the estimated structure’s ability to absorb damage. The differences in Fig. 5.3b tell a worse story. At 
first glance, they may not look particularly excessive but the slopes can be deceiving. If a median 
demand of 0.015 is recorded, then the structure should in reality have an EDP capacity of 0.038 to 
resist it successfully. If this is approximated by a tangent fit DCFD format, then the needed capacity is 
off the charts, practically infinite. A biased 1st order fit manages a better approximation at 0.050, while 
the 2nd order fit achieves a much improved estimate of 0.42. In general it seems that as the safety 
boundary veers further away from the 1:1 demand/capacity ratio, fitting accuracy matters more. 
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Figure 5.2. The DCFD comparison results for Building A, a low-curvature, ‘good case’ (T1 = 0.7s, EDP = 

0.01Sa
1.0, dispersions of 0.35 for demand and capacity) 
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Figure 5.3. The DCFD comparison results for Building B, a high-curvature, ‘bad case’ (T1 = 2.4s, EDP = 

0.01Sa
1.1 dispersions of 0.35 for demand and capacity) 

 
 
6. CONCLUSIONS 
 
A concise investigation of possible improvements for the SAC/FEMA closed form solution has been 
presented. Two hazard fitting approaches have been proposed, offering increased accuracy at a 
negligible cost. The first is a left-weighted, right-biased fitting of the 1st order power-law function. The 
second is a biased fitting of a 2nd order power-law together with a novel closed form expression. The 
latter is shown to be remarkably efficient, nearly zeroing-out the excessive errors due to the curvature 
of the seismic hazard. The improvement is so overwhelming that we can emphatically say that 
tangentially fitting a power-law function in log-space should be avoided at all costs. 
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