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SUMMARY: 
Selection and ranking of ground-motion prediction equations (GMPEs) for probabilistic seismic hazard 
assessment (PSHA) of a region or a specific site is a developing research topic. In this paper the major features 
of the likelihood approaches of LH (Scherbaum et al., 2004), LLH (Scherbaum et al., 2009) and a newly 
proposed alternative procedure, EDR (Kale and Akkar, 2012) are investigated. A total of 14 candidate GMPEs 
from shallow active crustal regions are tested with a dataset that comprises of 984 accelerograms from Turkey. 
The comparisons between above methods are made using the performances of candidate GMPEs on the selected 
database. The performances of GMPEs are evaluated by considering various magnitude and distance bins 
extracted from the strong-motion database. As part of this study, evaluation of these methods lead to a set of 
GMPEs that can be applied confidently in PSHA studies for Turkey where the ground-motion data is collected.  
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1. INTRODUCTION 
 
Ground-motion prediction equations (GMPEs) are key ingredients for the probabilistic seismic hazard 
assessment (PSHA) in a region or site of interest. With the increasing size and quality of the ground 
motion databases, a significant amount of effort has been devoted to develop new models for properly 
reflecting the seismological features of the seismic prone regions. This effort results in increasing 
number of ground-motion models in all around the world. In essence, selecting the appropriate 
predictive models to calculate hazard in a site (or a region) of interest has become a popular topic in 
engineering seismology. The ground shaking in the target region must be well reflected by the selected 
GMPEs as ground motion variability directly affects the computed hazard in the study area. 
 
Although there are various statistical methods (e.g., Chi-square, Kolmogorov-Smirnov, variance 
reduction, Pearson’s correlation coefficient) to test the predictive models for their suitability at a given 
region, the procedures proposed by Scherbaum and his co-authors have attracted the attention of 
seismological community for selection and ranking of GMPEs. These maximum likelihood methods 
are called as LH (Scherbaum et al., 2004) and LLH (Scherbaum et al., 2009). Both methods calculate 
the similarity between spectral values obtained from observed and estimated ground-motion data in a 
statistical way. Scherbaum and his co-authors applied the LH method to the border region of France, 
Germany, and Switzerland for a small set of observed data (Scherbaum et al., 2004). Hintersberger et 
al. (2007) re-implemented the same method to the same region by extending the strong-motion dataset 
but keeping the same candidate GMPEs of Scherbaum et al. (2004). Hintersberger et al. (2007) 
obtained similar ranking results as of Scherbaum et al. (2004), which was interpreted as the stability of 
LH method. The applicability of the GMPEs developed in Next Generation Attenuation (NGA) project 
(Power et al., 2008) to Euro-Mediterranean region was also evaluated by applying LH methodology 
(Stafford et al., 2008). In a later study Scherbaum et al. (2009) proposed the information-theoretic 
LLH approach, which is stated as superior to LH because the older method depends on the data 
ground-motion size, it cannot consider the standard deviation of GMPEs in a consistent manner and 
there is a subjectivity of the chosen significance levels ranking that in turn are used for ranking the 



GMPEs. The LLH method is also used as a robust selection and ranking technique in various studies 
(e.g., Delavaud et al., 2009; Delavaud et al., 2012a; 2012b) to identify suitable GMPEs for specific 
seismic prone regions. 
 
Kale and Akkar (2012) pointed that both LLH and LH methods may suffer from a consistent handling 
of sigma associated with GMPEs. Amongst 2 ground-motion predictive models of similar median 
estimations these methods would favor the one with higher sigma. GMPEs associated with larger 
sigma values may result in considerably large seismic hazard at long return periods (Restrepo-Velez 
and Bommer, 2003). To this end, Kale and Akkar (2012) proposed an alternative ranking and selection 
methodology that is called as Euclidean Distance Based Ranking (EDR) method. This method also 
needs an observed ground-motion dataset as in the case of LH and LLH methods. It uses the Euclidean 
distance that is basically the absolute difference between the observed and estimated data. EDR 
considers sigma in a way analogous to consideration of ground-motion variability in conventional 
PSHA. The bias between the median ground-motion estimations and observed data is taken into 
account by a scheme similar to residual analysis. These concepts make it different with respect to the 
likelihood methods discussed in the text. Independency of ranking results from data size and a more 
rational consideration of sigma effect on the performance of GMPE are believed to be the 
advantageous sides of EDR method. 
 
This study, first, details the fundamental features of the mentioned selection and ranking methods. 
Then, for a pre-selected set of local and global GMPEs, the ranking results of these procedures are 
compared by using a ground-motion database that consists of 984 recordings from 192 events recorded 
in Turkey. In the final part of this paper, the testing results are used to suggest a set of GMPEs that can 
be sued in the GMPE logic-tree applications for Turkey. 
 
 
2. SELECTION AND RANKING METHODS OF GMPES 
 
2.1. LH Method 
 
LH method, which is proposed by Scherbaum et al. (2004), calculates the normalized residuals for a 
set of observed and estimated ground-motion data by considering that GMPEs are normally distributed 
in natural logarithm unit. The exceedance probabilities corresponding to calculated residuals are 
determined as LH values (Fig. 2.1.a). By following Scherbaum et al. (2004), this likelihood parameter 
can be expressed by Eqn. 2.1: 
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where z0 represents the normalized residuals and Erf(z) is the error function while integrating the 
standard normal distribution. To describe the suitability of candidate GMPEs, the median LH values 
are reported as the resultant LH index that takes values between 0 and 1. For an optimum case, LH 
values are evenly distributed between 0 and 1, and the median of LH is about 0.5. 
 
2.2. LLH Method 
 
LLH method, which is an information-theoretic model selection method developed by Scherbaum et 
al. (2009) is based on log-likelihood approach to measure the distance between two continuous 
probability density functions f(x) and g(x). The function f(x) represents the distribution of an observed 
data point in the ground-motion dataset. The distribution of the estimated data point is described by 
g(x) and it is assumed as log-normal with the median and standard deviation of the considered GMPE. 
The distribution of f(x) is not known apriori and it is assumed to be log-normal with the same features 
of g(x). To obtain a model selection index, this approach calculates the average log-likelihood of the 
considered predictive model (Eqn. 2.2) using the observed dataset. An illustration of the probability 



consideration of LLH method is represented in Fig. 2.1.b. 
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In Eqn. 2.2, xi represents the observed data for i = 1,…, N. The parameter N is the total number of 
data. A small value of LLH ranking index indicates a better relationship between the observed and 
estimated ground-motion data. 
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Figure 2.1. Illustrations of the probability calculations of (a) LH and (b) LLH methods. The summation of the 
shaded areas under the probability density function of Z is reported as LH index. Computation of LLH index is 

based on the occurrence probability of xi by using median and sigma values of GMPE (µGMPE and σGMPE, 
respectively). 

 
2.3. EDR Method 
 
EDR method that is developed by Kale and Akkar (2012) proposes an alternative ground-motion 
model selection and ranking procedure. This method is based on Euclidean distance (DE) definition 
given in Eqn. 2.3 with some slight modifications to account for the influence of sigma on the 
estimated ground-motion data and existing trend between observed data and median estimations of 
predictive models. In Eqn. 2.3, square root of sum of squares of the differences between N number of 
(pi, qi) data pairs is calculated as Euclidean distance. 
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The consideration of sigma in EDR method is mimicked by the implementation of predictive models 
in PSHA. The logarithm of the ground-motion model is assumed to be normal with a mean, GMPE, and 
standard deviation GMPE. Thus, the ground-motion model yields a set of estimations with various 
levels of probability. The differences (D) between the logarithms of each observed data point and 
corresponding estimations for a range of GMPE result in a normal distribution with mean, µD, and 
sigma, σD. From summation of random variables, µD is obtained by subtracting GMPE from the 
observed data point. The summation of random variables dictates σD = GMPE (see Kale and Akkar, 
2012 for details). EDR method considers this resultant distribution to obtain a model ranking index by 
making use of Euclidean distance concept. Distribution of D is shown in the left panel of Fig. 2.2 
where dj values represent the discrete values of D. This method considers only positive values since 
analogy is made between DE and D (see details in Kale and Akkar, 2012 for details). Accordingly, the 
distribution of D is converted to distribution of |D| as given on the right panel of Fig. 2.2. For a pre-
selected sigma range, the Modified Euclidean distance (MDE) is obtained by using Eqn. 2.4.  
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In Eqn. 2.4, Pr (|D|<|dj|) is the occurrence probabilities of absolute differences, dj, within an 
infinitesimal bandwidth, dd, for n discrete points. 
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Figure 2.2. Illustrations of the probability definitions given in EDR method. Probability density function of D is 
given in the left panel. The right panel shows the probability density function of |D|. The gray shaded area 

represents the summation of the discrete probabilities, Pr (|D|<|dj|), given in left panel of this figure. 
 
The trend between the observed ground-motion data and corresponding median estimations is an 
indicator of bias for the considered predictive model. In EDR method, this bias is measured by the κ 
parameter given in Eqn. 2.5, which is the ratio of the original (DEoriginal) and corrected (DEcorrected) 
Euclidean distances. DEoriginal is calculated from Eqn. 2.3 by considering p and q as the observed and 
median estimations of the considered predictive model, respectively. Both p and q are in natural 
logarithm units. DEcorrected values are computed from observed data and corrected estimations that can 
be obtained by modifying the median estimations with the straight line fitted on the observed and 
estimated data. The ideal value of κ parameter is 1.0 (indicates observed data and corresponding 
median estimations overlap each other). Higher κ values indicate biased median estimations of 
GMPEs (Kale and Akkar, 2012). 
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When the process explained for MDE is repeated for the entire ground-motion dataset of N recordings, 
the computed MDE values are combined with κ to obtain the EDR index (Eqn. 2.6). The computed 
MDE values are normalized by the total data number, N to make the EDR index independent of data 
size. 
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A small value of EDR index is an indicator of the well representation of ground-motion dataset by the 
predictive model. The EDR index combines the effect of sigma and the level of trend between the 
observed data and median ground-motion estimations. These two components can be interpreted 
separately depending on the needs of the analysts. 
 
 
3. TESTING OF GMPES USING LIKELIHOOD AND EDR METHODS 
 
This section presents a case study about the implementation of investigated ground-motion selection 
and ranking procedures. The case study uses the Turkish ground motions that are compiled under the 
framework of the Earthquake Model of the Middle East (EMME) project. The case study tests 14 local 
and global GMPEs that are derived for different shallow active crustal regions around the world. 
 



3.1. Ground-Motion Database 
 
The strong-motion database considered in this study consists of the Turkish recordings from recently 
compiled EMME strong-motion database. The database includes 984 strong-motion accelerograms 
recorded from 192 events since 1976. The moment magnitudes (Mw) of the events are between 4.0 and 
7.6. The Joyner-Boore distances (RJB: closest distance to the horizontal projection of the fault rupture) 
and rupture distances (RRUP: closest distance to the fault rupture) of the accelerograms are less than 
200 km. These distances were calculated using the moment tensor solutions reported by the local and 
global seismic agencies. The acausal band-pass filtering procedure was applied to the recordings in the 
database by following the procedures explained in Akkar and Bommer (2006) and Akkar et al. (2011). 
Computation of finite-fault distance metrics (i.e., RJB and RRUP) from actual fault-plane solutions and 
individually filtered ground-motion data increase the reliability of the database. Fig. 3.1 shows Mw vs. 
RJB scatter plots of strong-motion recordings in terms of style-of-faulting (SoF) and site classification. 
The strike-slip, normal and reverse ground-motion records given in the left panel of Fig. 3.1 are 
abbreviated as S, N and R, respectively. The data scatter with respect to different site classes are 
shown on the right panel of Fig. 3.1. The site classes are in accordance with Eurocode 8 (CEN, 2004). 
This code uses VS30 (average shear wave velocity of top 30 m layer of the soil profile) intervals such 
that EC8-A, B, C and D soil classes correspond to VS30 > 800m/s, 360 < VS30 ≤ 800m/s, 180 < VS30 ≤ 
360m/s and VS30 ≤ 180m/s, respectively. The numeric information for the number of data 
corresponding to SoF and site classification is denoted next to each legend in the related figures. 
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Figure 3.1. Mw vs. RJB scatters of the database in terms of SoF (left panel) and site class (right panel). 
 
3.2. Selection and Testing of Candidate GMPEs 
 
Pre-selection of the local and global GMPEs is done by following the criteria described in Cotton et al. 
(2006) study. This method suggests that the GMPEs should be eliminated if 1) the model is from 
irrelevant tectonic regime, 2) the predictive model is not PEER-reviewed, 3) the documentation and 
dataset is insufficient, 4) the model has been superseded, 5) the period range is not appropriate, 6) the 
functional form is inappropriate, 7) the regression method or coefficients are inappropriate. 
 
The list of 14 GMPEs tested in this study and their acronyms are given in the first two columns of 
Tables 3.1 and 3.2. This pre-selected candidate ground-motion model set is the same as that used in 
the model selection and ranking work package of EMME project. The reader is referred to Kale and 
Akkar (2012) for general features of the candidate GMPEs. 
 
Tables 3.1 and 3.2 display the average testing results of GMPEs in terms of EDR components and 
actual EDR index. Tables 3.1 and 3.2 also list the corresponding LH and LLH ranking indices. Each 
table shows a different approach implemented during the testing of GMPEs. The test results given in 
Table 3.1 are obtained by considering the limitation of each GMPE in terms of magnitude and 
distance. In other words, the number of recordings used in the testing of each predictive model is 



different because of the magnitude and distance limitations imposed by each model developer. Table 
3.2 presents testing results that are computed using the entire database without considering the 
magnitude and distance limitations of the predictive model. In this case, the number of recordings used 
for testing is the same for all GMPEs. The average results given in these tables represent the overall 
performance of GMPEs for a spectral period band that comprises of T=0.0s (PGA), 0.1s, 0.2s, 0.5s, 
0.75s, 1.0s, 1.5s and 2.0s. The general performance of predictive models at each selected period is 
shown in Fig. 3.2 when all accelerograms in the dataset is used (case described for Table 3.2). A 
similar plot for the results summarized in Table 3.1 is not given due to the spacing limitations. 
 
Table 3.1. Performance of candidate GMPEs in terms of EDR components, EDR, LH and LLH indices by 
considering the magnitude and distance limitations of each predictive model. Top 4 best performing models are 
shown in bold. 

GMPEs Acronym  
N

1i
2
iMDE

N

1    EDR LH LLH 

Akkar and B.ommer (2010) AB10 1.12 1.23 1.39 0.38 2.31 

Akkar and Çağnan (2010) AC10 1.04 1.09 1.13 0.53 1.81 

Ambraseys et al. (2005) Aetal05 1.21 1.22 1.49 0.37 2.47 

Abrahamson and Silva (2008) AS08 1.21 1.28 1.55 0.26 2.81 

Boore and Atkinson (2008) BA08 1.20 1.32 1.59 0.18 3.06 

Bindi et al. (2010) Betal10 1.06 1.10 1.17 0.49 1.88 

Campbell and Bozorgnia (2008) CB08 1.27 1.39 1.76 0.12 3.65 

Cauzzi and Faccioli (2008) CF08 1.09 1.12 1.22 0.45 2.03 

Chiou and Youngs (2008) CY08 1.12 1.17 1.32 0.30 2.50 

Fukushima et al. (2003) Fetal03 1.26 1.35 1.72 0.23 2.88 

Ghasemi et al. (2009) Getal09 1.28 1.32 1.69 0.29 2.67 

Kalkan and Gülkan (2004) KG04 1.59 1.75 2.78 0.10 3.83 

Özbey et al. (2004) Oetal04 1.05 1.16 1.22 0.34 2.20 

Zhao et al. (2006) Zetal06 1.11 1.13 1.26 0.36 2.26 

 
Table 3.2. Performance of candidate GMPEs in terms of EDR components, EDR, LH and LLH indices by using 
the entire ground-motion database. Top 4 best performing models are shown in bold. 

GMPEs Acronym  
N

1i
2
iMDE

N

1    EDR LH LLH 

Akkar and Bommer (2010) AB10 1.04 1.10 1.14 0.42 2.06 

Akkar and Çağnan (2010) AC10 1.04 1.05 1.09 0.54 1.82 

Ambraseys et al. (2005) Aetal05 1.26 1.23 1.56 0.32 2.48 

Abrahamson and Silva (2008) AS08 1.30 1.34 1.74 0.17 3.10 

Boore and Atkinson (2008) BA08 1.20 1.32 1.59 0.18 3.06 

Bindi et al. (2010) Betal10 1.14 1.04 1.19 0.46 2.06 

Campbell and Bozorgnia (2008) CB08 1.27 1.39 1.76 0.12 3.65 

Cauzzi and Faccioli (2008) CF08 1.05 1.09 1.14 0.46 1.92 

Chiou and Youngs (2008) CY08 1.12 1.17 1.32 0.30 2.50 

Fukushima et al. (2003) Fetal03 1.83 1.72 3.14 0.03 5.44 

Ghasemi et al. (2009) Getal09 1.21 1.26 1.52 0.29 2.47 

Kalkan and Gülkan (2004) KG04 1.57 1.74 2.74 0.10 3.78 

Özbey et al. (2004) Oetal04 1.24 1.12 1.39 0.25 2.75 

Zhao et al. (2006) Zetal06 1.07 1.13 1.22 0.37 2.15 

 
The test results given in Tables 3.1 and 3.2 show that EDR, LH and LLH methods generally yield 
similar rankings. One particular advantage of EDR is that it not only provides an idea on the overall 
performance of tested predictive models but also informs the analyst about the individual contributions 



of sigma (i.e., the level of aleatory variability) and bias in median estimations to overall performance 
of GMPEs. For example, when testing results of entire database is of concern, Zetal06 performs better 
in terms of aleatory variability (smaller MDE component in EDR). However, Betal10 supersedes 
Zetal06 when the overall EDR is considered. Accordingly, as indicated before, EDR offers different 
levels of information to the analyst for considering the aleatory uncertainty, degree of bias between 
observed and median estimations and combination of these two components. 
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Figure 3.2. Performances of candidate GMPEs at the selected period levels when the entire database is used for 

testing of GMPEs. Top row shows the components of EDR index (  
N

1i
2
iMDE

N

1 and  ), middle row shows 

the actual EDR and LH indexes and bottom row shows the LLH index. 
 
When model limitations are considered, AC10, Betal10, CF08 and Oetal04 perform better according 
to EDR and LLH procedures. LH method reports AB10 model instead of Oetal04 among the best four 
performing GMPEs while rest of the models are same with the rankings of EDR and LLH procedures. 
When the entire database is used for all GMPEs, all ranking methods select the same four GMPEs: 
AB10, AC10, Betal10 and CF08. When all the ranking results are considered from these 2 cases, the 
better performing GMPEs are AB10, AC10, Betal10, CF08, Oetal04 and Zetal06.  
 
The above six GMPEs can be reduced further, if ground-motion variability is accepted to be addressed 
by 4 predictive models in GMPE logic-tree applications. The strong-motion database is divided into 
different Mw and RJB bins. The bins range from small to large magnitude earthquakes with various RJB 
intervals spanning near- to far-distance accelerograms. Fig. 3.3 shows the generated bins as well as the 



number of accelerograms in each bin. The Mw - RJB bins are called with the numbers given in the 
horizontal axis of this figure. The individual performances of the six GMPEs are re-evaluated using 
these Mw - RJB bins. The bin-dependent performances of the GMPEs are also important as the PSHA 
disaggregation results would identify different magnitude and distance values depending on the level 
of activity and proximity of seismic sources. 
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Figure 3.3. The generated Mw - RJB bins. Intervals of Mw and RJB are given next to each legend. Different 
magnitude intervals are represented by different colors while different patterns identify the distance intervals. 

For example, the 7th bin (i.e., No.7) represents the data for 5 ≤ Mw < 6 and 50 < RJB ≤ 100 km. 
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Figure 3.4. Performances of AB10, AC10, Betal10, CF08, Oetal04 and Zetal06 GMPEs for different Mw - RJB 
bins. Legends of this figure is the same as in Fig. 3.2. Top row shows the MDE component of EDR (i.e., 

 
N

1i
2
iMDE

N

1 ) and the actual EDR index. Bottom row shows LH and LLH ranking indices. 

 
The GMPEs that show fairly stable ranking results for bin-based data as considered here can be used 
in the GMPEs logic-tree applications for the considered region. Fig. 3.4 shows the average testing 
results of six GMPEs to assess their bin-based performances. The first row panels in Fig. 3.4 show the 
performance of GMPEs in terms of MDE component of EDR (left panel) and EDR index (right panel). 
The second row panels show similar comparisons for LH (left panel) and LLH (right panel) methods. 
Among the considered GMPEs for bin-based performance, Oetal04 and Betal10 do not perform stable 
behavior especially for the small-magnitude - far-distance bin (i.e., No.4). Oetal04 model also shows 



relatively poor performance for bins of small and moderate magnitudes and near-distance recordings 
(i.e., No.1, No.2 and No.5). Another interesting observation from the presented results is the unstable 
performance of AB10 for close-distance – large-magnitude recordings (i.e., No.9). However, this 
model shows fairly good performance for the rest of the bins. AC10, CF08 and Zetal06 predictive 
models perform relatively better for all the bins. Under the light of these observations, GMPE logic-
tree applications in Turkey can consider AB10, AC10, CF08 and Zetal06 for consistent hazard results. 
 
 
4. CONCLUSIONS 
 
In this study, different testing methods (i.e., LH, LLH and EDR) that are used for selection and 
ranking of ground-motion models are described with their essential features. The LH method 
(Scherbaum et al., 2004) uses the exceedance probabilities of normalized residuals to assess the 
candidate GMPEs. The information-theoretic LLH approach (Scherbaum et al., 2009) supersedes the 
LH method and it computes the occurrence probabilities of the empirical ground-motion data using the 
median and sigma values of GMPEs to develop a ranking index. These methods, in probability 
computations, normalize the residuals with standard deviation of the GMPEs. This fact may result in 
favoring of GMPEs associated with larger sigma in ranking (Kale and Akkar, 2012). The last 
investigated procedure, EDR that is proposed by Kale and Akkar (2012) handles the consideration of 
sigma in a different way: it considers a range of sigma values instead of normalizing the residuals with 
sigma as done by both likelihood methods. 
 
A case study is conducted to compare the main features of the LH, LLH and EDR methods as well as 
the associated components of EDR index, which account for the effect of sigma and existing trend 
between observed data and median estimations. The case study also serves for proposing a set of 
consistent and reliable GMPEs for GMPE logic-tree applications in Turkey. The compared selection 
and ranking methods generally give similar ranking results. AB10, AC10, CF08 and Zetal06 are the 
proposed predictive models for GMPE logic-tree applications after evaluating different testing 
schemes on the pre-selected candidate GMPEs. 
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